# Copyright 2024 IQuestLoopCoder Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. """IQuestLoopCoder model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class IQuestLoopCoderConfig(PretrainedConfig): r""" Configuration class for IQuestLoopCoder model. IQuestLoopCoder extends the standard LLaMA architecture with a loop mechanism: - Loop 1: Standard attention, stores K1, V1 - Loop 2+: Mixed attention with gated combination of global (K1,V1) and local (K2,V2) KV The gate is computed as: gate = sigmoid(W @ Q + bias) Mixed output = gate * Attention(Q, K1, V1) + (1 - gate) * SlidingWindowAttention(Q, K2, V2) Args: vocab_size (`int`, *optional*, defaults to 76800): Vocabulary size of the model. hidden_size (`int`, *optional*, defaults to 5120): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 27648): Dimension of the MLP representations (FFN hidden size). num_hidden_layers (`int`, *optional*, defaults to 80): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 40): Number of attention heads for each attention layer. num_key_value_heads (`int`, *optional*, defaults to 8): Number of key-value heads (for GQA). If None, defaults to num_attention_heads. head_dim (`int`, *optional*, defaults to 128): Dimension of each attention head (hidden_size // num_attention_heads). hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): Activation function in the MLP. max_position_embeddings (`int`, *optional*, defaults to 8192): Maximum sequence length. initializer_range (`float`, *optional*, defaults to 0.02): Standard deviation for weight initialization. rms_norm_eps (`float`, *optional*, defaults to 1e-5): Epsilon for RMS normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether to use past key/values for generation. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. rope_theta (`float`, *optional*, defaults to 500000.0): Base value for rotary position embeddings. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in attention layers. attention_dropout (`float`, *optional*, defaults to 0.0): Dropout ratio for attention weights. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in MLP layers. # Loop-specific parameters loop_num (`int`, *optional*, defaults to 2): Number of loops through the decoder. loop_window_size (`int`, *optional*, defaults to 64): Window size for sliding window attention in Loop 2+. """ model_type = "iquestloopcoder" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=76800, hidden_size=5120, intermediate_size=27648, num_hidden_layers=80, num_attention_heads=40, num_key_value_heads=8, head_dim=128, hidden_act="silu", max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=500000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, # Loop-specific parameters loop_num=2, loop_window_size=64, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim # GQA support if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias # Loop-specific self.loop_num = loop_num self.loop_window_size = loop_window_size super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )