Model card
Browse files
README.md
CHANGED
|
@@ -2,8 +2,250 @@
|
|
| 2 |
library_name: mlx
|
| 3 |
license: apache-2.0
|
| 4 |
license_link: https://huggingface.co/Qwen/Qwen3.5-397B-A17B/blob/main/LICENSE
|
| 5 |
-
pipeline_tag: text-generation
|
| 6 |
base_model: Qwen/Qwen3.5-397B-A17B
|
|
|
|
| 7 |
tags:
|
| 8 |
- mlx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: mlx
|
| 3 |
license: apache-2.0
|
| 4 |
license_link: https://huggingface.co/Qwen/Qwen3.5-397B-A17B/blob/main/LICENSE
|
|
|
|
| 5 |
base_model: Qwen/Qwen3.5-397B-A17B
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
tags:
|
| 8 |
- mlx
|
| 9 |
+
- 4bit
|
| 10 |
+
- quantized
|
| 11 |
+
- qwen3_5_moe
|
| 12 |
+
- moe
|
| 13 |
+
- mixture-of-experts
|
| 14 |
+
- text-generation
|
| 15 |
+
- conversational
|
| 16 |
+
- apple-silicon
|
| 17 |
+
language:
|
| 18 |
+
- multilingual
|
| 19 |
---
|
| 20 |
+
|
| 21 |
+
# Qwen3.5-397B-A17B-4bit (MLX)
|
| 22 |
+
|
| 23 |
+
4-bit [MLX](https://github.com/ml-explore/mlx) quantized version of the **text** model from [Qwen/Qwen3.5-397B-A17B](https://huggingface.co/Qwen/Qwen3.5-397B-A17B).
|
| 24 |
+
|
| 25 |
+
Portions of this card were copied or adapted from the original model card, authored by the Qwen team.
|
| 26 |
+
|
| 27 |
+
## Model Overview
|
| 28 |
+
|
| 29 |
+
Qwen3.5-397B-A17B is Alibaba's latest flagship language model, featuring a hybrid architecture that combines Gated DeltaNet (linear attention) with sparse Mixture-of-Experts for high-throughput inference. Despite having 397B total parameters, only ~17B are activated per token, making it remarkably efficient for its capability level.
|
| 30 |
+
|
| 31 |
+
This conversion provides a **text-only** 4-bit quantized version optimized for local inference on Apple Silicon Macs via the MLX framework. The vision encoder from the original multimodal model is not included — for image/video understanding, refer to the original [Qwen/Qwen3.5-397B-A17B](https://huggingface.co/Qwen/Qwen3.5-397B-A17B).
|
| 32 |
+
|
| 33 |
+
### Key Capabilities
|
| 34 |
+
|
| 35 |
+
- **201 languages and dialects** with deep cultural and regional understanding
|
| 36 |
+
- **262K native context** (extensible to 1M+ with YaRN)
|
| 37 |
+
- **Thinking mode** with chain-of-thought reasoning (`<think>...</think>`)
|
| 38 |
+
- **Tool use and agentic workflows** (MCP, function calling)
|
| 39 |
+
- **Competitive benchmarks**: MMLU-Pro 87.8, SuperGPQA 70.4, C-Eval 93.0
|
| 40 |
+
|
| 41 |
+
## Architecture
|
| 42 |
+
|
| 43 |
+
| Parameter | Value |
|
| 44 |
+
|---|---|
|
| 45 |
+
| Total Parameters | 397B |
|
| 46 |
+
| Active Parameters | ~17B |
|
| 47 |
+
| Hidden Size | 4,096 |
|
| 48 |
+
| Layers | 60 |
|
| 49 |
+
| Layer Layout | 15 × (3 × Gated DeltaNet + 1 × Full Attention), all with MoE FFN |
|
| 50 |
+
| Total Experts | 512 |
|
| 51 |
+
| Active Experts per Token | 10 routed + 1 shared |
|
| 52 |
+
| Expert Intermediate Size | 1,024 |
|
| 53 |
+
| Full Attention Heads | 32 Q / 2 KV (GQA), head dim 256 |
|
| 54 |
+
| Linear Attention Heads | 16 QK / 64 V, head dim 128 |
|
| 55 |
+
| Context Length | 262,144 tokens |
|
| 56 |
+
| Vocab Size | 248,320 |
|
| 57 |
+
|
| 58 |
+
## Quantization Details
|
| 59 |
+
|
| 60 |
+
| Parameter | Value |
|
| 61 |
+
|---|---|
|
| 62 |
+
| Method | Affine quantization |
|
| 63 |
+
| Bits | 4-bit (weights) |
|
| 64 |
+
| Group Size | 64 |
|
| 65 |
+
| MoE Router Gates | 8-bit (preserved at higher precision) |
|
| 66 |
+
| Model Size on Disk | ~223 GB |
|
| 67 |
+
|
| 68 |
+
The MoE router gates (`mlp.gate` and `mlp.shared_expert_gate` for all 60 layers) are kept at 8-bit precision to preserve routing accuracy, which is critical for Mixture-of-Experts models.
|
| 69 |
+
|
| 70 |
+
## Requirements
|
| 71 |
+
|
| 72 |
+
- Apple Silicon Mac with **at least 256 GB unified memory** (e.g., Mac Studio M2/M3/M4 Ultra 256GB+)
|
| 73 |
+
- Python 3.10+
|
| 74 |
+
- [`mlx-lm`](https://github.com/ml-explore/mlx-lm) v0.30.7 or better
|
| 75 |
+
|
| 76 |
+
> **Note**: Although only ~17B parameters are active per token, all 397B parameters (~223 GB quantized) must be loaded into unified memory.
|
| 77 |
+
|
| 78 |
+
## Installation
|
| 79 |
+
|
| 80 |
+
```bash
|
| 81 |
+
pip install mlx-lm
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
## Usage
|
| 85 |
+
|
| 86 |
+
### Quick Start — Python API
|
| 87 |
+
|
| 88 |
+
```python
|
| 89 |
+
from mlx_lm import load, generate
|
| 90 |
+
|
| 91 |
+
model, tokenizer = load("mlx-community/Qwen3.5-397B-A17B-4bit")
|
| 92 |
+
|
| 93 |
+
messages = [{"role": "user", "content": "Explain the Riemann hypothesis in simple terms."}]
|
| 94 |
+
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
| 95 |
+
|
| 96 |
+
response = generate(
|
| 97 |
+
model,
|
| 98 |
+
tokenizer,
|
| 99 |
+
prompt=prompt,
|
| 100 |
+
max_tokens=4096,
|
| 101 |
+
verbose=True,
|
| 102 |
+
temp=0.6,
|
| 103 |
+
top_p=0.95,
|
| 104 |
+
)
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
### Thinking Mode (Default)
|
| 108 |
+
|
| 109 |
+
The model defaults to thinking mode, producing chain-of-thought reasoning inside `<think>...</think>` tags before the final answer:
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
from mlx_lm import load, generate
|
| 113 |
+
|
| 114 |
+
model, tokenizer = load("mlx-community/Qwen3.5-397B-A17B-4bit")
|
| 115 |
+
|
| 116 |
+
messages = [
|
| 117 |
+
{"role": "user", "content": "How many r's are in the word 'strawberry'?"}
|
| 118 |
+
]
|
| 119 |
+
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
| 120 |
+
|
| 121 |
+
response = generate(
|
| 122 |
+
model,
|
| 123 |
+
tokenizer,
|
| 124 |
+
prompt=prompt,
|
| 125 |
+
max_tokens=8192,
|
| 126 |
+
verbose=True,
|
| 127 |
+
temp=0.6,
|
| 128 |
+
top_p=0.95,
|
| 129 |
+
)
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
### Non-Thinking Mode
|
| 133 |
+
|
| 134 |
+
For faster, more direct responses without chain-of-thought reasoning:
|
| 135 |
+
|
| 136 |
+
```python
|
| 137 |
+
from mlx_lm import load, generate
|
| 138 |
+
|
| 139 |
+
model, tokenizer = load("mlx-community/Qwen3.5-397B-A17B-4bit")
|
| 140 |
+
|
| 141 |
+
messages = [
|
| 142 |
+
{"role": "user", "content": "Write a haiku about machine learning."}
|
| 143 |
+
]
|
| 144 |
+
prompt = tokenizer.apply_chat_template(
|
| 145 |
+
messages,
|
| 146 |
+
add_generation_prompt=True,
|
| 147 |
+
enable_thinking=False,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
response = generate(
|
| 151 |
+
model,
|
| 152 |
+
tokenizer,
|
| 153 |
+
prompt=prompt,
|
| 154 |
+
max_tokens=2048,
|
| 155 |
+
verbose=True,
|
| 156 |
+
temp=0.7,
|
| 157 |
+
top_p=0.8,
|
| 158 |
+
)
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
### Command Line
|
| 162 |
+
|
| 163 |
+
```bash
|
| 164 |
+
# Thinking mode (default)
|
| 165 |
+
mlx_lm.generate \
|
| 166 |
+
--model mlx-community/Qwen3.5-397B-A17B-4bit \
|
| 167 |
+
--prompt "What are the key differences between TCP and UDP?" \
|
| 168 |
+
--max-tokens 4096 \
|
| 169 |
+
--temp 0.6 \
|
| 170 |
+
--top-p 0.95
|
| 171 |
+
|
| 172 |
+
# Start a local chat server (OpenAI-compatible)
|
| 173 |
+
mlx_lm.server --model mlx-community/Qwen3.5-397B-A17B-4bit
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
### Local OpenAI-Compatible Server
|
| 177 |
+
|
| 178 |
+
Start the server:
|
| 179 |
+
|
| 180 |
+
```bash
|
| 181 |
+
mlx_lm.server --model mlx-community/Qwen3.5-397B-A17B-4bit --port 8080
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
Then query it with any OpenAI-compatible client:
|
| 185 |
+
|
| 186 |
+
```python
|
| 187 |
+
from openai import OpenAI
|
| 188 |
+
|
| 189 |
+
client = OpenAI(base_url="http://localhost:8080/v1", api_key="unused")
|
| 190 |
+
|
| 191 |
+
response = client.chat.completions.create(
|
| 192 |
+
model="mlx-community/Qwen3.5-397B-A17B-4bit",
|
| 193 |
+
messages=[
|
| 194 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 195 |
+
{"role": "user", "content": "Write a Python function to find all prime numbers up to n using the Sieve of Eratosthenes."},
|
| 196 |
+
],
|
| 197 |
+
max_tokens=4096,
|
| 198 |
+
temperature=0.6,
|
| 199 |
+
top_p=0.95,
|
| 200 |
+
)
|
| 201 |
+
print(response.choices[0].message.content)
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
Or with `curl`:
|
| 205 |
+
|
| 206 |
+
```bash
|
| 207 |
+
curl http://localhost:8080/v1/chat/completions \
|
| 208 |
+
-H "Content-Type: application/json" \
|
| 209 |
+
-d '{
|
| 210 |
+
"model": "mlx-community/Qwen3.5-397B-A17B-4bit",
|
| 211 |
+
"messages": [{"role": "user", "content": "Hello!"}],
|
| 212 |
+
"max_tokens": 512,
|
| 213 |
+
"temperature": 0.6
|
| 214 |
+
}'
|
| 215 |
+
```
|
| 216 |
+
|
| 217 |
+
## Recommended Generation Parameters
|
| 218 |
+
|
| 219 |
+
| Parameter | Thinking Mode | Non-Thinking Mode |
|
| 220 |
+
|---|---|---|
|
| 221 |
+
| `temperature` | 0.6 | 0.7 |
|
| 222 |
+
| `top_p` | 0.95 | 0.8 |
|
| 223 |
+
| `top_k` | 20 | 20 |
|
| 224 |
+
| `presence_penalty` | 0.0 | 1.5 |
|
| 225 |
+
| `repetition_penalty` | 1.0 | 1.0 |
|
| 226 |
+
| `max_tokens` (general) | 32,768 | 32,768 |
|
| 227 |
+
| `max_tokens` (math/code) | 81,920 | — |
|
| 228 |
+
|
| 229 |
+
## Tips
|
| 230 |
+
|
| 231 |
+
- **Thinking mode** is best for complex reasoning, math, and coding tasks. The model will produce internal reasoning before answering.
|
| 232 |
+
- **Non-thinking mode** is better for straightforward Q&A, creative writing, and conversational use where latency matters.
|
| 233 |
+
- For **math problems**, append: *"Please reason step by step, and put your final answer within \boxed{}."*
|
| 234 |
+
- For **multi-turn conversations**, the default chat template automatically strips thinking content from prior turns.
|
| 235 |
+
- If running into **memory pressure**, consider closing other applications to free unified memory.
|
| 236 |
+
|
| 237 |
+
## Original Model
|
| 238 |
+
|
| 239 |
+
This is a quantized version of [Qwen/Qwen3.5-397B-A17B](https://huggingface.co/Qwen/Qwen3.5-397B-A17B). Refer to the original model card for full benchmark results, training details, and the technical report.
|
| 240 |
+
|
| 241 |
+
## Citation
|
| 242 |
+
|
| 243 |
+
```bibtex
|
| 244 |
+
@misc{qwen3.5,
|
| 245 |
+
title = {{Qwen3.5}: Towards Native Multimodal Agents},
|
| 246 |
+
author = {{Qwen Team}},
|
| 247 |
+
month = {February},
|
| 248 |
+
year = {2026},
|
| 249 |
+
url = {https://qwen.ai/blog?id=qwen3.5}
|
| 250 |
+
}
|
| 251 |
+
```
|