Update README.md
Browse files
README.md
CHANGED
|
@@ -3,17 +3,22 @@ library_name: transformers
|
|
| 3 |
datasets:
|
| 4 |
- bigcode/the-stack-v2
|
| 5 |
license: bigcode-openrail-m
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
|
| 8 |
-
#
|
| 9 |
|
| 10 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
### How to use
|
| 19 |
```python
|
|
@@ -53,189 +58,24 @@ You will get as an output three elements:
|
|
| 53 |
- raw_hidden_states: raw representation from all the hidden states of the model, without pooling, normalization, and projection
|
| 54 |
- attentions: attention scores from the encoder
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
<!-- Provide a longer summary of what this model is. -->
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
-
|
| 76 |
-
- **Demo [optional]:** [More Information Needed]
|
| 77 |
-
|
| 78 |
-
## Uses
|
| 79 |
-
|
| 80 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 81 |
-
|
| 82 |
-
### Direct Use
|
| 83 |
-
|
| 84 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 85 |
-
|
| 86 |
-
[More Information Needed]
|
| 87 |
-
|
| 88 |
-
### Downstream Use [optional]
|
| 89 |
-
|
| 90 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 91 |
-
|
| 92 |
-
[More Information Needed]
|
| 93 |
-
|
| 94 |
-
### Out-of-Scope Use
|
| 95 |
-
|
| 96 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 97 |
-
|
| 98 |
-
[More Information Needed]
|
| 99 |
-
|
| 100 |
-
## Bias, Risks, and Limitations
|
| 101 |
-
|
| 102 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 103 |
-
|
| 104 |
-
[More Information Needed]
|
| 105 |
-
|
| 106 |
-
### Recommendations
|
| 107 |
-
|
| 108 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 109 |
-
|
| 110 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 111 |
-
|
| 112 |
-
## How to Get Started with the Model
|
| 113 |
-
|
| 114 |
-
Use the code below to get started with the model.
|
| 115 |
-
|
| 116 |
-
[More Information Needed]
|
| 117 |
-
|
| 118 |
-
## Training Details
|
| 119 |
-
|
| 120 |
-
### Training Data
|
| 121 |
-
|
| 122 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 123 |
-
|
| 124 |
-
[More Information Needed]
|
| 125 |
-
|
| 126 |
-
### Training Procedure
|
| 127 |
-
|
| 128 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 129 |
-
|
| 130 |
-
#### Preprocessing [optional]
|
| 131 |
-
|
| 132 |
-
[More Information Needed]
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
#### Training Hyperparameters
|
| 136 |
-
|
| 137 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 138 |
-
|
| 139 |
-
#### Speeds, Sizes, Times [optional]
|
| 140 |
-
|
| 141 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 142 |
-
|
| 143 |
-
[More Information Needed]
|
| 144 |
-
|
| 145 |
-
## Evaluation
|
| 146 |
-
|
| 147 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 148 |
-
|
| 149 |
-
### Testing Data, Factors & Metrics
|
| 150 |
-
|
| 151 |
-
#### Testing Data
|
| 152 |
-
|
| 153 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 154 |
-
|
| 155 |
-
[More Information Needed]
|
| 156 |
-
|
| 157 |
-
#### Factors
|
| 158 |
-
|
| 159 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Metrics
|
| 164 |
-
|
| 165 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 166 |
-
|
| 167 |
-
[More Information Needed]
|
| 168 |
-
|
| 169 |
-
### Results
|
| 170 |
-
|
| 171 |
-
[More Information Needed]
|
| 172 |
-
|
| 173 |
-
#### Summary
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
## Model Examination [optional]
|
| 178 |
-
|
| 179 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Environmental Impact
|
| 184 |
-
|
| 185 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 186 |
-
|
| 187 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 188 |
-
|
| 189 |
-
- **Hardware Type:** [More Information Needed]
|
| 190 |
-
- **Hours used:** [More Information Needed]
|
| 191 |
-
- **Cloud Provider:** [More Information Needed]
|
| 192 |
-
- **Compute Region:** [More Information Needed]
|
| 193 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 194 |
-
|
| 195 |
-
## Technical Specifications [optional]
|
| 196 |
-
|
| 197 |
-
### Model Architecture and Objective
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
|
| 201 |
-
### Compute Infrastructure
|
| 202 |
-
|
| 203 |
-
[More Information Needed]
|
| 204 |
-
|
| 205 |
-
#### Hardware
|
| 206 |
-
|
| 207 |
-
[More Information Needed]
|
| 208 |
-
|
| 209 |
-
#### Software
|
| 210 |
-
|
| 211 |
-
[More Information Needed]
|
| 212 |
-
|
| 213 |
-
## Citation [optional]
|
| 214 |
-
|
| 215 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 216 |
-
|
| 217 |
-
**BibTeX:**
|
| 218 |
-
|
| 219 |
-
[More Information Needed]
|
| 220 |
-
|
| 221 |
-
**APA:**
|
| 222 |
-
|
| 223 |
-
[More Information Needed]
|
| 224 |
-
|
| 225 |
-
## Glossary [optional]
|
| 226 |
-
|
| 227 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 228 |
-
|
| 229 |
-
[More Information Needed]
|
| 230 |
-
|
| 231 |
-
## More Information [optional]
|
| 232 |
-
|
| 233 |
-
[More Information Needed]
|
| 234 |
-
|
| 235 |
-
## Model Card Authors [optional]
|
| 236 |
-
|
| 237 |
-
[More Information Needed]
|
| 238 |
-
|
| 239 |
-
## Model Card Contact
|
| 240 |
-
|
| 241 |
-
[More Information Needed]
|
|
|
|
| 3 |
datasets:
|
| 4 |
- bigcode/the-stack-v2
|
| 5 |
license: bigcode-openrail-m
|
| 6 |
+
base_model:
|
| 7 |
+
- andreagurioli1995/ModularStarEncoder
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# ModularStarEncoder-1B Fine-Tuned model
|
| 11 |
|
| 12 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 13 |
|
| 14 |
+
ModularStarEncoder-finetuned is an encoder built on top of [ModularStarEncoder-1B Pre-trained](https://huggingface.co/andreagurioli1995/ModularStarEncoder) on [SynthCode2Code2NL](add link here).
|
| 15 |
+
ModularStarEncoder fine-tuned encoder for various retrieval tasks, enabling the end user to select the model size that meets their memory and computational constraints.
|
| 16 |
+
We built ModularStarEncoder on top of [StarCoder-2](https://huggingface.co/bigcode/starcoder2-15b), reducing its size from 15B to 1B parameters in bfloat16.
|
| 17 |
|
| 18 |
+
The model is finetuned with [CLIP objective](https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/loss.py)
|
| 19 |
|
| 20 |
+
- **Paper:** [Link](arxiv.paper)
|
| 21 |
+
- **Languages:** English, Go, Ruby, Python, Java, C++, PHP, C, JavaScript
|
|
|
|
| 22 |
|
| 23 |
### How to use
|
| 24 |
```python
|
|
|
|
| 58 |
- raw_hidden_states: raw representation from all the hidden states of the model, without pooling, normalization, and projection
|
| 59 |
- attentions: attention scores from the encoder
|
| 60 |
|
| 61 |
+
|
| 62 |
+
### Training
|
| 63 |
|
| 64 |
<!-- Provide a longer summary of what this model is. -->
|
| 65 |
+
We fine-tuned ModularStarEncoder with a batch size of 2048 contrastive samples for 20,000 training steps.
|
| 66 |
+
The pre-training and fine-tuning were conducted on 512 NVIDIA Ampere (64GB) GPUs using the [Leonardo](https://arxiv.org/abs/2307.16885) supercomputer, requiring 450,000 GPU working hours.
|
| 67 |
+
|
| 68 |
+
| Hyperparameter | Value |
|
| 69 |
+
|--------------------------|-----------|
|
| 70 |
+
| Hidden size | 1024 |
|
| 71 |
+
| Max. position embeddings | 2048 |
|
| 72 |
+
| Num. of attention heads | 12 |
|
| 73 |
+
| Num. of key values heads | 4 |
|
| 74 |
+
| Num. of hidden layers | 36 |
|
| 75 |
+
| Attention | GQA |
|
| 76 |
+
| Num. of parameters | ≈1B |
|
| 77 |
+
|Loss function |CLIP loss |
|
| 78 |
+
|Multi-layer loss | yes |
|
| 79 |
+
|
| 80 |
+
## Licence
|
| 81 |
+
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|