momererkoc commited on
Commit
55ad69c
·
verified ·
1 Parent(s): 836cef6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -23
README.md CHANGED
@@ -1,3 +1,6 @@
 
 
 
1
  # YOLOv12‑x Object Detector
2
 
3
  Ultralytics’s attention‑centric, real‑time object detection model **YOLOv12‑x** is now available on Hugging Face.
@@ -6,53 +9,98 @@ Ultralytics’s attention‑centric, real‑time object detection model **YOLOv1
6
 
7
  ## 🧠 Model Description
8
 
9
- YOLOv12‑x builds on the YOLO12 family by combining **Area Attention** and **R‑ELAN** modules to deliver state‑of‑the‑art detection accuracy with fewer parameters and FLOPs. Optional **FlashAttention** integration further reduces memory access overhead and boosts inference speed on modern NVIDIA GPUs :contentReference[oaicite:0]{index=0}.
10
 
11
  ---
12
 
13
  ## ⚙️ Requirements
14
 
15
- - **Python** ≥ 3.8
16
- - **PyTorch** ≥ 1.10 (CUDA‑enabled)
17
- - **CUDA** ≥ 11.2 compatible GPU
18
- - **Optional**: FlashAttention (install via `pip install flash-attn`)
19
- - **Recommended GPU architectures** for FlashAttention support:
20
- - Turing (e.g. T4, Quadro RTX)
21
- - Ampere (RTX 30 series, A30/40/100)
22
- - Ada Lovelace (RTX 40 series)
23
- - Hopper (H100/H200) :contentReference[oaicite:1]{index=1}
24
- - **System specs**: ≥ 8 GB RAM, ≥ 50 GB free disk
 
25
 
26
  ---
27
 
28
- ## 🚀 Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  ## 📊 Performance & Use Cases
 
32
  Benchmarked on COCO val2017 at 640 × 640 resolution on an NVIDIA T4 GPU:
33
 
34
- Model mAP@0.5:0.95 Latency (ms) Params (M) FLOPs (B)
35
- YOLO12‑x 55.2 % 11.79 59.1 199.0
 
36
 
37
  YOLOv12‑x excels in scenarios demanding both high accuracy and near‑real‑time throughput:
38
 
39
- Autonomous vehicles
 
 
40
 
41
- Industrial inspection
42
-
43
- Surveillance & security systems
44
 
 
45
 
 
46
  @article{tian2025yolov12,
47
  title={YOLOv12: Attention-Centric Real-Time Object Detectors},
48
  author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
49
  journal={arXiv preprint arXiv:2502.12524},
50
  year={2025}
51
  }
 
52
 
53
- ```python
54
- from ultralytics import YOLO
55
 
56
- model = YOLO("yolov12x.pt")
57
- results = model.predict(source="test.jpg", imgsz=640, conf=0.25)
58
- results[0].show()
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: object-detection
3
+ ---
4
  # YOLOv12‑x Object Detector
5
 
6
  Ultralytics’s attention‑centric, real‑time object detection model **YOLOv12‑x** is now available on Hugging Face.
 
9
 
10
  ## 🧠 Model Description
11
 
12
+ YOLOv12‑x builds on the YOLO12 family by combining **Area Attention** and **R‑ELAN** modules to deliver state‑of‑the‑art detection accuracy with fewer parameters and FLOPs. Optional **FlashAttention** integration further reduces memory access overhead and boosts inference speed on modern NVIDIA GPUs citeturn0view0.
13
 
14
  ---
15
 
16
  ## ⚙️ Requirements
17
 
18
+ * **Python** ≥ 3.8
19
+ * **PyTorch** ≥ 1.10 (CUDA‑enabled)
20
+ * **CUDA** ≥ 11.2 compatible GPU
21
+ * **Optional**: FlashAttention (install via `pip install flash-attn`)
22
+ * **Recommended GPU architectures** for FlashAttention support:
23
+
24
+ * Turing (e.g. T4, Quadro RTX)
25
+ * Ampere (RTX 30 series, A30/40/100)
26
+ * Ada Lovelace (RTX 40 series)
27
+ * Hopper (H100/H200) citeturn0view0
28
+ * **System specs**: ≥ 8 GB RAM, ≥ 50 GB free disk
29
 
30
  ---
31
 
32
+ ## 🚀 Installation & Usage
33
+
34
+ ```bash
35
+ pip install ultralytics
36
+ # (Optional for FlashAttention)
37
+ pip install flash-attn
38
+ ```
39
+
40
+ **Python example**:
41
+
42
+ ```python
43
+ from ultralytics import YOLO
44
+
45
+ # Load a COCO-pretrained YOLO12x model
46
+ model = YOLO("yolo12x.pt")
47
+
48
+ # Train the model on the COCO8 example dataset for 100 epochs
49
+ results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
50
 
51
+ # Run inference with the YOLO12n model on the 'bus.jpg' image
52
+ results = model("path/to/bus.jpg")
53
+ ```
54
+
55
+ **CLI example**:
56
+
57
+ ```bash
58
+ yolo detect predict model=yolov12x.pt source=test.jpg imgsz=640 conf=0.25
59
+ ```
60
+
61
+ ---
62
 
63
  ## 📊 Performance & Use Cases
64
+
65
  Benchmarked on COCO val2017 at 640 × 640 resolution on an NVIDIA T4 GPU:
66
 
67
+ | Model | mAP\@0.5:0.95 | Latency (ms) | Params (M) | FLOPs (B) | |
68
+ | -------- | ------------- | ------------ | ---------- | --------- | ----------------- |
69
+ | YOLO12‑x | 55.2 % | 11.79 | 59.1 | 199.0 | citeturn0view0 |
70
 
71
  YOLOv12‑x excels in scenarios demanding both high accuracy and near‑real‑time throughput:
72
 
73
+ * Autonomous vehicles
74
+ * Industrial inspection
75
+ * Surveillance & security systems
76
 
77
+ ---
 
 
78
 
79
+ ## 📚 References
80
 
81
+ ```bibtex
82
  @article{tian2025yolov12,
83
  title={YOLOv12: Attention-Centric Real-Time Object Detectors},
84
  author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
85
  journal={arXiv preprint arXiv:2502.12524},
86
  year={2025}
87
  }
88
+ ```
89
 
90
+ ---
 
91
 
92
+ ## 📝 Summary
93
+
94
+ | Feature | Details |
95
+ | ------------------ | --------------------------------------------- |
96
+ | **Model** | YOLOv12‑x |
97
+ | **Architecture** | Area Attention + R‑ELAN |
98
+ | **FlashAttention** | Optional (GPU‑accelerated) |
99
+ | **Requirements** | Python ≥ 3.8, PyTorch ≥ 1.10, CUDA ≥ 11.2 |
100
+ | **Use Cases** | Real‑time object detection with high accuracy |
101
+
102
+ ```plaintext
103
+ Files:
104
+ ├── yolov12x.pt # Trained model weights
105
+ ├── README.md # This file
106
+ ```