Add new SparseEncoder model
Browse files- README.md +537 -0
- config_sentence_transformers.json +14 -0
- document_0_MLMTransformer/config.json +23 -0
- document_0_MLMTransformer/model.safetensors +3 -0
- document_0_MLMTransformer/sentence_bert_config.json +4 -0
- document_0_MLMTransformer/special_tokens_map.json +7 -0
- document_0_MLMTransformer/tokenizer.json +0 -0
- document_0_MLMTransformer/tokenizer_config.json +56 -0
- document_0_MLMTransformer/vocab.txt +0 -0
- document_1_SpladePooling/config.json +5 -0
- modules.json +8 -0
- query_0_SparseStaticEmbedding/config.json +3 -0
- query_0_SparseStaticEmbedding/model.safetensors +3 -0
- query_0_SparseStaticEmbedding/special_tokens_map.json +7 -0
- query_0_SparseStaticEmbedding/tokenizer.json +0 -0
- query_0_SparseStaticEmbedding/tokenizer_config.json +56 -0
- query_0_SparseStaticEmbedding/vocab.txt +0 -0
- router_config.json +20 -0
README.md
ADDED
|
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sparse-encoder
|
| 8 |
+
- sparse
|
| 9 |
+
- asymmetric
|
| 10 |
+
- inference-free
|
| 11 |
+
- splade
|
| 12 |
+
- generated_from_trainer
|
| 13 |
+
- dataset_size:9000
|
| 14 |
+
- loss:SpladeLoss
|
| 15 |
+
- loss:SparseMultipleNegativesRankingLoss
|
| 16 |
+
- loss:FlopsLoss
|
| 17 |
+
- dataset_size:89000
|
| 18 |
+
base_model: distilbert/distilbert-base-uncased
|
| 19 |
+
widget:
|
| 20 |
+
- text: Blank Neoprene Water Bottle Coolies (Variety Color 10 Pack)
|
| 21 |
+
- text: Dream Spa 3-way 8-Setting Rainfall Shower Head and Handheld Shower Combo (Chrome).
|
| 22 |
+
Use Luxury 7-inch Rain Showerhead or 7-Function Hand Shower for Ultimate Spa Experience!
|
| 23 |
+
- text: ¿Está disponible el nuevo iPhone 7 Plus?
|
| 24 |
+
- text: Naipo Back Massager Massage Chair Vibrating Car Seat Cushion for Back, Neck,
|
| 25 |
+
and Thigh with 8 Motor Vibrations 4 Modes 3 Speed Heating at Home Office Car
|
| 26 |
+
- text: Pizuna 400 Thread Count Cotton Fitted-Sheet Queen Size White 1pc, 100% Long
|
| 27 |
+
Staple Cotton Sateen Fitted Bed Sheet With All Around Elastic Deep Pocket Queen
|
| 28 |
+
Sheets Fit Up to 15Inch (White Fitted Sheet)
|
| 29 |
+
pipeline_tag: feature-extraction
|
| 30 |
+
library_name: sentence-transformers
|
| 31 |
+
metrics:
|
| 32 |
+
- dot_accuracy@1
|
| 33 |
+
- dot_accuracy@3
|
| 34 |
+
- dot_accuracy@5
|
| 35 |
+
- dot_accuracy@10
|
| 36 |
+
- dot_precision@1
|
| 37 |
+
- dot_precision@3
|
| 38 |
+
- dot_precision@5
|
| 39 |
+
- dot_precision@10
|
| 40 |
+
- dot_recall@1
|
| 41 |
+
- dot_recall@3
|
| 42 |
+
- dot_recall@5
|
| 43 |
+
- dot_recall@10
|
| 44 |
+
- dot_ndcg@10
|
| 45 |
+
- dot_mrr@10
|
| 46 |
+
- dot_map@100
|
| 47 |
+
- query_active_dims
|
| 48 |
+
- query_sparsity_ratio
|
| 49 |
+
- corpus_active_dims
|
| 50 |
+
- corpus_sparsity_ratio
|
| 51 |
+
model-index:
|
| 52 |
+
- name: Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions
|
| 53 |
+
tuples
|
| 54 |
+
results:
|
| 55 |
+
- task:
|
| 56 |
+
type: sparse-information-retrieval
|
| 57 |
+
name: Sparse Information Retrieval
|
| 58 |
+
dataset:
|
| 59 |
+
name: NanoMSMARCO
|
| 60 |
+
type: NanoMSMARCO
|
| 61 |
+
metrics:
|
| 62 |
+
- type: dot_accuracy@1
|
| 63 |
+
value: 0.3
|
| 64 |
+
name: Dot Accuracy@1
|
| 65 |
+
- type: dot_accuracy@3
|
| 66 |
+
value: 0.58
|
| 67 |
+
name: Dot Accuracy@3
|
| 68 |
+
- type: dot_accuracy@5
|
| 69 |
+
value: 0.66
|
| 70 |
+
name: Dot Accuracy@5
|
| 71 |
+
- type: dot_accuracy@10
|
| 72 |
+
value: 0.76
|
| 73 |
+
name: Dot Accuracy@10
|
| 74 |
+
- type: dot_precision@1
|
| 75 |
+
value: 0.3
|
| 76 |
+
name: Dot Precision@1
|
| 77 |
+
- type: dot_precision@3
|
| 78 |
+
value: 0.19333333333333336
|
| 79 |
+
name: Dot Precision@3
|
| 80 |
+
- type: dot_precision@5
|
| 81 |
+
value: 0.132
|
| 82 |
+
name: Dot Precision@5
|
| 83 |
+
- type: dot_precision@10
|
| 84 |
+
value: 0.07600000000000001
|
| 85 |
+
name: Dot Precision@10
|
| 86 |
+
- type: dot_recall@1
|
| 87 |
+
value: 0.3
|
| 88 |
+
name: Dot Recall@1
|
| 89 |
+
- type: dot_recall@3
|
| 90 |
+
value: 0.58
|
| 91 |
+
name: Dot Recall@3
|
| 92 |
+
- type: dot_recall@5
|
| 93 |
+
value: 0.66
|
| 94 |
+
name: Dot Recall@5
|
| 95 |
+
- type: dot_recall@10
|
| 96 |
+
value: 0.76
|
| 97 |
+
name: Dot Recall@10
|
| 98 |
+
- type: dot_ndcg@10
|
| 99 |
+
value: 0.5302210774188797
|
| 100 |
+
name: Dot Ndcg@10
|
| 101 |
+
- type: dot_mrr@10
|
| 102 |
+
value: 0.45638095238095233
|
| 103 |
+
name: Dot Mrr@10
|
| 104 |
+
- type: dot_map@100
|
| 105 |
+
value: 0.4675385567218492
|
| 106 |
+
name: Dot Map@100
|
| 107 |
+
- type: query_active_dims
|
| 108 |
+
value: 6.380000114440918
|
| 109 |
+
name: Query Active Dims
|
| 110 |
+
- type: query_sparsity_ratio
|
| 111 |
+
value: 0.9997909704437966
|
| 112 |
+
name: Query Sparsity Ratio
|
| 113 |
+
- type: corpus_active_dims
|
| 114 |
+
value: 813.6908569335938
|
| 115 |
+
name: Corpus Active Dims
|
| 116 |
+
- type: corpus_sparsity_ratio
|
| 117 |
+
value: 0.9733408408055306
|
| 118 |
+
name: Corpus Sparsity Ratio
|
| 119 |
+
---
|
| 120 |
+
|
| 121 |
+
# Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions tuples
|
| 122 |
+
|
| 123 |
+
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
| 124 |
+
## Model Details
|
| 125 |
+
|
| 126 |
+
### Model Description
|
| 127 |
+
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
|
| 128 |
+
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
|
| 129 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 130 |
+
- **Output Dimensionality:** 30522 dimensions
|
| 131 |
+
- **Similarity Function:** Dot Product
|
| 132 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 133 |
+
- **Language:** en
|
| 134 |
+
- **License:** apache-2.0
|
| 135 |
+
|
| 136 |
+
### Model Sources
|
| 137 |
+
|
| 138 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 139 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
| 140 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 141 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
| 142 |
+
|
| 143 |
+
### Full Model Architecture
|
| 144 |
+
|
| 145 |
+
```
|
| 146 |
+
SparseEncoder(
|
| 147 |
+
(0): Router(
|
| 148 |
+
(sub_modules): ModuleDict(
|
| 149 |
+
(query): Sequential(
|
| 150 |
+
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
|
| 151 |
+
)
|
| 152 |
+
(document): Sequential(
|
| 153 |
+
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
|
| 154 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
| 155 |
+
)
|
| 156 |
+
)
|
| 157 |
+
)
|
| 158 |
+
)
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
## Usage
|
| 162 |
+
|
| 163 |
+
### Direct Usage (Sentence Transformers)
|
| 164 |
+
|
| 165 |
+
First install the Sentence Transformers library:
|
| 166 |
+
|
| 167 |
+
```bash
|
| 168 |
+
pip install -U sentence-transformers
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
Then you can load this model and run inference.
|
| 172 |
+
```python
|
| 173 |
+
from sentence_transformers import SparseEncoder
|
| 174 |
+
|
| 175 |
+
# Download from the 🤗 Hub
|
| 176 |
+
model = SparseEncoder("monkeypostulate/inference-free-splade-distilbert-base-uncased-nq")
|
| 177 |
+
# Run inference
|
| 178 |
+
queries = [
|
| 179 |
+
"\u00bfHay una s\u00e1bana de algod\u00f3n ajustada disponible en tama\u00f1o queen?",
|
| 180 |
+
]
|
| 181 |
+
documents = [
|
| 182 |
+
'Pizuna 400 Thread Count Cotton Fitted-Sheet Queen Size White 1pc, 100% Long Staple Cotton Sateen Fitted Bed Sheet With All Around Elastic Deep Pocket Queen Sheets Fit Up to 15Inch (White Fitted Sheet)',
|
| 183 |
+
'ArtSocket Shower Curtain Teal Rustic Shabby Country Chic Blue Curtains Wood Rose Home Bathroom Decor Polyester Fabric Waterproof 72 x 72 Inches Set with Hooks',
|
| 184 |
+
'AFARER Case Compatible with Samsung Galaxy S7 5.1 inch, Military Grade 12ft Drop Tested Protective Case with Kickstand,Military Armor Dual Layer Protective Cover - Blue',
|
| 185 |
+
]
|
| 186 |
+
query_embeddings = model.encode_query(queries)
|
| 187 |
+
document_embeddings = model.encode_document(documents)
|
| 188 |
+
print(query_embeddings.shape, document_embeddings.shape)
|
| 189 |
+
# [1, 30522] [3, 30522]
|
| 190 |
+
|
| 191 |
+
# Get the similarity scores for the embeddings
|
| 192 |
+
similarities = model.similarity(query_embeddings, document_embeddings)
|
| 193 |
+
print(similarities)
|
| 194 |
+
# tensor([[13.2777, 7.2952, 2.9255]])
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
<!--
|
| 198 |
+
### Direct Usage (Transformers)
|
| 199 |
+
|
| 200 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 201 |
+
|
| 202 |
+
</details>
|
| 203 |
+
-->
|
| 204 |
+
|
| 205 |
+
<!--
|
| 206 |
+
### Downstream Usage (Sentence Transformers)
|
| 207 |
+
|
| 208 |
+
You can finetune this model on your own dataset.
|
| 209 |
+
|
| 210 |
+
<details><summary>Click to expand</summary>
|
| 211 |
+
|
| 212 |
+
</details>
|
| 213 |
+
-->
|
| 214 |
+
|
| 215 |
+
<!--
|
| 216 |
+
### Out-of-Scope Use
|
| 217 |
+
|
| 218 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 219 |
+
-->
|
| 220 |
+
|
| 221 |
+
## Evaluation
|
| 222 |
+
|
| 223 |
+
### Metrics
|
| 224 |
+
|
| 225 |
+
#### Sparse Information Retrieval
|
| 226 |
+
|
| 227 |
+
* Dataset: `NanoMSMARCO`
|
| 228 |
+
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
|
| 229 |
+
|
| 230 |
+
| Metric | Value |
|
| 231 |
+
|:----------------------|:-----------|
|
| 232 |
+
| dot_accuracy@1 | 0.3 |
|
| 233 |
+
| dot_accuracy@3 | 0.58 |
|
| 234 |
+
| dot_accuracy@5 | 0.66 |
|
| 235 |
+
| dot_accuracy@10 | 0.76 |
|
| 236 |
+
| dot_precision@1 | 0.3 |
|
| 237 |
+
| dot_precision@3 | 0.1933 |
|
| 238 |
+
| dot_precision@5 | 0.132 |
|
| 239 |
+
| dot_precision@10 | 0.076 |
|
| 240 |
+
| dot_recall@1 | 0.3 |
|
| 241 |
+
| dot_recall@3 | 0.58 |
|
| 242 |
+
| dot_recall@5 | 0.66 |
|
| 243 |
+
| dot_recall@10 | 0.76 |
|
| 244 |
+
| **dot_ndcg@10** | **0.5302** |
|
| 245 |
+
| dot_mrr@10 | 0.4564 |
|
| 246 |
+
| dot_map@100 | 0.4675 |
|
| 247 |
+
| query_active_dims | 6.38 |
|
| 248 |
+
| query_sparsity_ratio | 0.9998 |
|
| 249 |
+
| corpus_active_dims | 813.6909 |
|
| 250 |
+
| corpus_sparsity_ratio | 0.9733 |
|
| 251 |
+
|
| 252 |
+
<!--
|
| 253 |
+
## Bias, Risks and Limitations
|
| 254 |
+
|
| 255 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 256 |
+
-->
|
| 257 |
+
|
| 258 |
+
<!--
|
| 259 |
+
### Recommendations
|
| 260 |
+
|
| 261 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 262 |
+
-->
|
| 263 |
+
|
| 264 |
+
## Training Details
|
| 265 |
+
|
| 266 |
+
### Training Dataset
|
| 267 |
+
|
| 268 |
+
#### Unnamed Dataset
|
| 269 |
+
|
| 270 |
+
* Size: 89,000 training samples
|
| 271 |
+
* Columns: <code>query</code> and <code>document</code>
|
| 272 |
+
* Approximate statistics based on the first 1000 samples:
|
| 273 |
+
| | query | document |
|
| 274 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 275 |
+
| type | string | string |
|
| 276 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 21.52 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 33.4 tokens</li><li>max: 93 tokens</li></ul> |
|
| 277 |
+
* Samples:
|
| 278 |
+
| query | document |
|
| 279 |
+
|:-------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 280 |
+
| <code>¿Hay una lámpara de colgar con batería disponible?</code> | <code>Farmhouse Plug in Pendant Light with On/Off Switch Wire Caged Hanging Pendant Lamp 16ft Cord</code> |
|
| 281 |
+
| <code>¿Hay leggings con bolsillos disponibles para mujeres?</code> | <code>IUGA High Waist Yoga Pants with Pockets, Tummy Control, Workout Pants for Women 4 Way Stretch Yoga Leggings with Pockets</code> |
|
| 282 |
+
| <code>¿Cuál es la tapa de oscuridad marrón disponible?</code> | <code>Thicken It 100% Scalp Coverage Hair Powder - DARK BROWN - Talc-Free .32 oz. Water Resistant Hair Loss Concealer. Naturally Thicker Than Hair Fibers & Spray Concealers</code> |
|
| 283 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
| 284 |
+
```json
|
| 285 |
+
{
|
| 286 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
|
| 287 |
+
"document_regularizer_weight": 0.003,
|
| 288 |
+
"query_regularizer_weight": 0
|
| 289 |
+
}
|
| 290 |
+
```
|
| 291 |
+
|
| 292 |
+
### Evaluation Dataset
|
| 293 |
+
|
| 294 |
+
#### Unnamed Dataset
|
| 295 |
+
|
| 296 |
+
* Size: 1,000 evaluation samples
|
| 297 |
+
* Columns: <code>query</code> and <code>document</code>
|
| 298 |
+
* Approximate statistics based on the first 1000 samples:
|
| 299 |
+
| | query | document |
|
| 300 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 301 |
+
| type | string | string |
|
| 302 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 20.94 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 33.09 tokens</li><li>max: 79 tokens</li></ul> |
|
| 303 |
+
* Samples:
|
| 304 |
+
| query | document |
|
| 305 |
+
|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 306 |
+
| <code>¿Qué es un modelo anatómico del corazón?</code> | <code>Axis Scientific Heart Model, 2-Part Deluxe Life Size Human Heart Replica with 34 Anatomical Structures, Held Together with Magnets, Includes Mounted Display Base, Detailed Product Manual and Warranty</code> |
|
| 307 |
+
| <code>¿Hay un buscador de peces portátil disponible?</code> | <code>HawkEye Fishtrax 1C Fish Finder with HD Color Virtuview Display, Black/Red, 2" H x 1.6" W Screen Size</code> |
|
| 308 |
+
| <code>¿Hay un disfraz de Anna adulta de Frozen disponible para comprar?</code> | <code>Mitef Anime Cosplay Costume Princess Anna Fancy Dress with Shawl for Adult, L</code> |
|
| 309 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
| 310 |
+
```json
|
| 311 |
+
{
|
| 312 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
|
| 313 |
+
"document_regularizer_weight": 0.003,
|
| 314 |
+
"query_regularizer_weight": 0
|
| 315 |
+
}
|
| 316 |
+
```
|
| 317 |
+
|
| 318 |
+
### Training Hyperparameters
|
| 319 |
+
#### Non-Default Hyperparameters
|
| 320 |
+
|
| 321 |
+
- `eval_strategy`: steps
|
| 322 |
+
- `per_device_train_batch_size`: 256
|
| 323 |
+
- `per_device_eval_batch_size`: 256
|
| 324 |
+
- `learning_rate`: 2e-05
|
| 325 |
+
- `warmup_ratio`: 0.1
|
| 326 |
+
- `batch_sampler`: no_duplicates
|
| 327 |
+
- `router_mapping`: {'query': 'query', 'answer': 'document'}
|
| 328 |
+
|
| 329 |
+
#### All Hyperparameters
|
| 330 |
+
<details><summary>Click to expand</summary>
|
| 331 |
+
|
| 332 |
+
- `overwrite_output_dir`: False
|
| 333 |
+
- `do_predict`: False
|
| 334 |
+
- `eval_strategy`: steps
|
| 335 |
+
- `prediction_loss_only`: True
|
| 336 |
+
- `per_device_train_batch_size`: 256
|
| 337 |
+
- `per_device_eval_batch_size`: 256
|
| 338 |
+
- `per_gpu_train_batch_size`: None
|
| 339 |
+
- `per_gpu_eval_batch_size`: None
|
| 340 |
+
- `gradient_accumulation_steps`: 1
|
| 341 |
+
- `eval_accumulation_steps`: None
|
| 342 |
+
- `torch_empty_cache_steps`: None
|
| 343 |
+
- `learning_rate`: 2e-05
|
| 344 |
+
- `weight_decay`: 0.0
|
| 345 |
+
- `adam_beta1`: 0.9
|
| 346 |
+
- `adam_beta2`: 0.999
|
| 347 |
+
- `adam_epsilon`: 1e-08
|
| 348 |
+
- `max_grad_norm`: 1.0
|
| 349 |
+
- `num_train_epochs`: 3
|
| 350 |
+
- `max_steps`: -1
|
| 351 |
+
- `lr_scheduler_type`: linear
|
| 352 |
+
- `lr_scheduler_kwargs`: {}
|
| 353 |
+
- `warmup_ratio`: 0.1
|
| 354 |
+
- `warmup_steps`: 0
|
| 355 |
+
- `log_level`: passive
|
| 356 |
+
- `log_level_replica`: warning
|
| 357 |
+
- `log_on_each_node`: True
|
| 358 |
+
- `logging_nan_inf_filter`: True
|
| 359 |
+
- `save_safetensors`: True
|
| 360 |
+
- `save_on_each_node`: False
|
| 361 |
+
- `save_only_model`: False
|
| 362 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 363 |
+
- `no_cuda`: False
|
| 364 |
+
- `use_cpu`: False
|
| 365 |
+
- `use_mps_device`: False
|
| 366 |
+
- `seed`: 42
|
| 367 |
+
- `data_seed`: None
|
| 368 |
+
- `jit_mode_eval`: False
|
| 369 |
+
- `use_ipex`: False
|
| 370 |
+
- `bf16`: False
|
| 371 |
+
- `fp16`: False
|
| 372 |
+
- `fp16_opt_level`: O1
|
| 373 |
+
- `half_precision_backend`: auto
|
| 374 |
+
- `bf16_full_eval`: False
|
| 375 |
+
- `fp16_full_eval`: False
|
| 376 |
+
- `tf32`: None
|
| 377 |
+
- `local_rank`: 0
|
| 378 |
+
- `ddp_backend`: None
|
| 379 |
+
- `tpu_num_cores`: None
|
| 380 |
+
- `tpu_metrics_debug`: False
|
| 381 |
+
- `debug`: []
|
| 382 |
+
- `dataloader_drop_last`: False
|
| 383 |
+
- `dataloader_num_workers`: 0
|
| 384 |
+
- `dataloader_prefetch_factor`: None
|
| 385 |
+
- `past_index`: -1
|
| 386 |
+
- `disable_tqdm`: False
|
| 387 |
+
- `remove_unused_columns`: True
|
| 388 |
+
- `label_names`: None
|
| 389 |
+
- `load_best_model_at_end`: False
|
| 390 |
+
- `ignore_data_skip`: False
|
| 391 |
+
- `fsdp`: []
|
| 392 |
+
- `fsdp_min_num_params`: 0
|
| 393 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 394 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 395 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 396 |
+
- `deepspeed`: None
|
| 397 |
+
- `label_smoothing_factor`: 0.0
|
| 398 |
+
- `optim`: adamw_torch_fused
|
| 399 |
+
- `optim_args`: None
|
| 400 |
+
- `adafactor`: False
|
| 401 |
+
- `group_by_length`: False
|
| 402 |
+
- `length_column_name`: length
|
| 403 |
+
- `ddp_find_unused_parameters`: None
|
| 404 |
+
- `ddp_bucket_cap_mb`: None
|
| 405 |
+
- `ddp_broadcast_buffers`: False
|
| 406 |
+
- `dataloader_pin_memory`: True
|
| 407 |
+
- `dataloader_persistent_workers`: False
|
| 408 |
+
- `skip_memory_metrics`: True
|
| 409 |
+
- `use_legacy_prediction_loop`: False
|
| 410 |
+
- `push_to_hub`: False
|
| 411 |
+
- `resume_from_checkpoint`: None
|
| 412 |
+
- `hub_model_id`: None
|
| 413 |
+
- `hub_strategy`: every_save
|
| 414 |
+
- `hub_private_repo`: None
|
| 415 |
+
- `hub_always_push`: False
|
| 416 |
+
- `hub_revision`: None
|
| 417 |
+
- `gradient_checkpointing`: False
|
| 418 |
+
- `gradient_checkpointing_kwargs`: None
|
| 419 |
+
- `include_inputs_for_metrics`: False
|
| 420 |
+
- `include_for_metrics`: []
|
| 421 |
+
- `eval_do_concat_batches`: True
|
| 422 |
+
- `fp16_backend`: auto
|
| 423 |
+
- `push_to_hub_model_id`: None
|
| 424 |
+
- `push_to_hub_organization`: None
|
| 425 |
+
- `mp_parameters`:
|
| 426 |
+
- `auto_find_batch_size`: False
|
| 427 |
+
- `full_determinism`: False
|
| 428 |
+
- `torchdynamo`: None
|
| 429 |
+
- `ray_scope`: last
|
| 430 |
+
- `ddp_timeout`: 1800
|
| 431 |
+
- `torch_compile`: False
|
| 432 |
+
- `torch_compile_backend`: None
|
| 433 |
+
- `torch_compile_mode`: None
|
| 434 |
+
- `include_tokens_per_second`: False
|
| 435 |
+
- `include_num_input_tokens_seen`: False
|
| 436 |
+
- `neftune_noise_alpha`: None
|
| 437 |
+
- `optim_target_modules`: None
|
| 438 |
+
- `batch_eval_metrics`: False
|
| 439 |
+
- `eval_on_start`: False
|
| 440 |
+
- `use_liger_kernel`: False
|
| 441 |
+
- `liger_kernel_config`: None
|
| 442 |
+
- `eval_use_gather_object`: False
|
| 443 |
+
- `average_tokens_across_devices`: False
|
| 444 |
+
- `prompts`: None
|
| 445 |
+
- `batch_sampler`: no_duplicates
|
| 446 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 447 |
+
- `router_mapping`: {'query': 'query', 'answer': 'document'}
|
| 448 |
+
- `learning_rate_mapping`: {}
|
| 449 |
+
|
| 450 |
+
</details>
|
| 451 |
+
|
| 452 |
+
### Training Logs
|
| 453 |
+
| Epoch | Step | Training Loss | NanoMSMARCO_dot_ndcg@10 |
|
| 454 |
+
|:------:|:----:|:-------------:|:-----------------------:|
|
| 455 |
+
| 0.5747 | 200 | 3.33 | - |
|
| 456 |
+
| 1.1494 | 400 | 2.755 | - |
|
| 457 |
+
| -1 | -1 | - | 0.5302 |
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
### Framework Versions
|
| 461 |
+
- Python: 3.9.6
|
| 462 |
+
- Sentence Transformers: 5.1.0
|
| 463 |
+
- Transformers: 4.55.0
|
| 464 |
+
- PyTorch: 2.8.0
|
| 465 |
+
- Accelerate: 1.10.0
|
| 466 |
+
- Datasets: 4.0.0
|
| 467 |
+
- Tokenizers: 0.21.4
|
| 468 |
+
|
| 469 |
+
## Citation
|
| 470 |
+
|
| 471 |
+
### BibTeX
|
| 472 |
+
|
| 473 |
+
#### Sentence Transformers
|
| 474 |
+
```bibtex
|
| 475 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 476 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 477 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 478 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 479 |
+
month = "11",
|
| 480 |
+
year = "2019",
|
| 481 |
+
publisher = "Association for Computational Linguistics",
|
| 482 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 483 |
+
}
|
| 484 |
+
```
|
| 485 |
+
|
| 486 |
+
#### SpladeLoss
|
| 487 |
+
```bibtex
|
| 488 |
+
@misc{formal2022distillationhardnegativesampling,
|
| 489 |
+
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
| 490 |
+
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
| 491 |
+
year={2022},
|
| 492 |
+
eprint={2205.04733},
|
| 493 |
+
archivePrefix={arXiv},
|
| 494 |
+
primaryClass={cs.IR},
|
| 495 |
+
url={https://arxiv.org/abs/2205.04733},
|
| 496 |
+
}
|
| 497 |
+
```
|
| 498 |
+
|
| 499 |
+
#### SparseMultipleNegativesRankingLoss
|
| 500 |
+
```bibtex
|
| 501 |
+
@misc{henderson2017efficient,
|
| 502 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 503 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 504 |
+
year={2017},
|
| 505 |
+
eprint={1705.00652},
|
| 506 |
+
archivePrefix={arXiv},
|
| 507 |
+
primaryClass={cs.CL}
|
| 508 |
+
}
|
| 509 |
+
```
|
| 510 |
+
|
| 511 |
+
#### FlopsLoss
|
| 512 |
+
```bibtex
|
| 513 |
+
@article{paria2020minimizing,
|
| 514 |
+
title={Minimizing flops to learn efficient sparse representations},
|
| 515 |
+
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
| 516 |
+
journal={arXiv preprint arXiv:2004.05665},
|
| 517 |
+
year={2020}
|
| 518 |
+
}
|
| 519 |
+
```
|
| 520 |
+
|
| 521 |
+
<!--
|
| 522 |
+
## Glossary
|
| 523 |
+
|
| 524 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 525 |
+
-->
|
| 526 |
+
|
| 527 |
+
<!--
|
| 528 |
+
## Model Card Authors
|
| 529 |
+
|
| 530 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 531 |
+
-->
|
| 532 |
+
|
| 533 |
+
<!--
|
| 534 |
+
## Model Card Contact
|
| 535 |
+
|
| 536 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 537 |
+
-->
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SparseEncoder",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.1.0",
|
| 5 |
+
"transformers": "4.55.0",
|
| 6 |
+
"pytorch": "2.8.0"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "dot"
|
| 14 |
+
}
|
document_0_MLMTransformer/config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "gelu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DistilBertForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.1,
|
| 7 |
+
"dim": 768,
|
| 8 |
+
"dropout": 0.1,
|
| 9 |
+
"hidden_dim": 3072,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"max_position_embeddings": 512,
|
| 12 |
+
"model_type": "distilbert",
|
| 13 |
+
"n_heads": 12,
|
| 14 |
+
"n_layers": 6,
|
| 15 |
+
"pad_token_id": 0,
|
| 16 |
+
"qa_dropout": 0.1,
|
| 17 |
+
"seq_classif_dropout": 0.2,
|
| 18 |
+
"sinusoidal_pos_embds": false,
|
| 19 |
+
"tie_weights_": true,
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.55.0",
|
| 22 |
+
"vocab_size": 30522
|
| 23 |
+
}
|
document_0_MLMTransformer/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be0e44d5d6bbf9e553d89e57c178f6c1b539962df9ab0d8e8bbe584a576f7555
|
| 3 |
+
size 267954768
|
document_0_MLMTransformer/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
document_0_MLMTransformer/special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
document_0_MLMTransformer/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
document_0_MLMTransformer/tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
document_0_MLMTransformer/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
document_1_SpladePooling/config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"pooling_strategy": "max",
|
| 3 |
+
"activation_function": "relu",
|
| 4 |
+
"word_embedding_dimension": 30522
|
| 5 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Router"
|
| 7 |
+
}
|
| 8 |
+
]
|
query_0_SparseStaticEmbedding/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"frozen": false
|
| 3 |
+
}
|
query_0_SparseStaticEmbedding/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ebdac66a6b9e9ca8e50bfaa3191bc4b6a88f0b1d1f2bb6c2f7346138efa7b5f
|
| 3 |
+
size 122168
|
query_0_SparseStaticEmbedding/special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
query_0_SparseStaticEmbedding/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
query_0_SparseStaticEmbedding/tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
query_0_SparseStaticEmbedding/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
router_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"types": {
|
| 3 |
+
"query_0_SparseStaticEmbedding": "sentence_transformers.sparse_encoder.models.SparseStaticEmbedding.SparseStaticEmbedding",
|
| 4 |
+
"document_0_MLMTransformer": "sentence_transformers.sparse_encoder.models.MLMTransformer.MLMTransformer",
|
| 5 |
+
"document_1_SpladePooling": "sentence_transformers.sparse_encoder.models.SpladePooling.SpladePooling"
|
| 6 |
+
},
|
| 7 |
+
"structure": {
|
| 8 |
+
"query": [
|
| 9 |
+
"query_0_SparseStaticEmbedding"
|
| 10 |
+
],
|
| 11 |
+
"document": [
|
| 12 |
+
"document_0_MLMTransformer",
|
| 13 |
+
"document_1_SpladePooling"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
"parameters": {
|
| 17 |
+
"default_route": "document",
|
| 18 |
+
"allow_empty_key": true
|
| 19 |
+
}
|
| 20 |
+
}
|