Update README.md
Browse files
README.md
CHANGED
|
@@ -1,9 +1,41 @@
|
|
| 1 |
---
|
| 2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
## Training procedure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
### Framework versions
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
| 9 |
- PEFT 0.4.0
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: peft
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets:
|
| 5 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
| 6 |
+
tags:
|
| 7 |
+
- falcon
|
| 8 |
+
- falcon-7b
|
| 9 |
+
- code
|
| 10 |
+
- code instruct
|
| 11 |
+
- instruct code
|
| 12 |
+
- code alpaca
|
| 13 |
+
- python code
|
| 14 |
+
- code copilot
|
| 15 |
+
- copilot
|
| 16 |
+
- python coding assistant
|
| 17 |
+
- coding assistant
|
| 18 |
---
|
| 19 |
## Training procedure
|
| 20 |
+
We finetuned Falcon-7B LLM on Python-Code-Instructions Dataset ([iamtarun/python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca)) for 10 epochs or ~ 23,000 steps using [MonsterAPI](https://monsterapi.ai) no-code [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm).
|
| 21 |
+
|
| 22 |
+
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
|
| 23 |
+
|
| 24 |
+
The finetuning session got completed in 7.3 hours and costed us only `$17.5` for the entire finetuning run!
|
| 25 |
+
|
| 26 |
+
#### Hyperparameters & Run details:
|
| 27 |
+
- Model Path: tiiuae/falcon-7b
|
| 28 |
+
- Dataset: iamtarun/python_code_instructions_18k_alpaca
|
| 29 |
+
- Learning rate: 0.0002
|
| 30 |
+
- Number of epochs: 10
|
| 31 |
+
- Data split: Training: 95% / Validation: 5%
|
| 32 |
+
- Gradient accumulation steps: 1
|
| 33 |
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
+
### Framework versions
|
| 37 |
+
|
| 38 |
- PEFT 0.4.0
|
| 39 |
+
|
| 40 |
+
### Loss metrics:
|
| 41 |
+

|