File size: 7,011 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import re
import tempfile
import numpy as np
import torch
from pathlib import Path
import argparse
import pandas as pd
from rdkit import Chem
from tqdm import tqdm
try:
import utils
except ModuleNotFoundError as e:
print(e)
def calculate_smina_score(pdb_file, sdf_file):
# add '-o <name>_smina.sdf' if you want to see the output
out = os.popen(f'smina.static -l {sdf_file} -r {pdb_file} '
f'--score_only').read()
matches = re.findall(
r"Affinity:[ ]+([+-]?[0-9]*[.]?[0-9]+)[ ]+\(kcal/mol\)", out)
return [float(x) for x in matches]
def smina_score(rdmols, receptor_file):
"""
Calculate smina score
:param rdmols: List of RDKit molecules
:param receptor_file: Receptor pdb/pdbqt file or list of receptor files
:return: Smina score for each input molecule (list)
"""
if isinstance(receptor_file, list):
scores = []
for mol, rec_file in zip(rdmols, receptor_file):
with tempfile.NamedTemporaryFile(suffix='.sdf') as tmp:
tmp_file = tmp.name
utils.write_sdf_file(tmp_file, [mol])
scores.extend(calculate_smina_score(rec_file, tmp_file))
# Use same receptor file for all molecules
else:
with tempfile.NamedTemporaryFile(suffix='.sdf') as tmp:
tmp_file = tmp.name
utils.write_sdf_file(tmp_file, rdmols)
scores = calculate_smina_score(receptor_file, tmp_file)
return scores
def sdf_to_pdbqt(sdf_file, pdbqt_outfile, mol_id):
os.popen(f'obabel {sdf_file} -O {pdbqt_outfile} '
f'-f {mol_id + 1} -l {mol_id + 1}').read()
return pdbqt_outfile
def calculate_qvina2_score(receptor_file, sdf_file, out_dir, size=20,
exhaustiveness=16, return_rdmol=False):
receptor_file = Path(receptor_file)
sdf_file = Path(sdf_file)
if receptor_file.suffix == '.pdb':
# prepare receptor, requires Python 2.7
receptor_pdbqt_file = Path(out_dir, receptor_file.stem + '.pdbqt')
os.popen(f'prepare_receptor4.py -r {receptor_file} -O {receptor_pdbqt_file}')
else:
receptor_pdbqt_file = receptor_file
scores = []
rdmols = [] # for if return rdmols
suppl = Chem.SDMolSupplier(str(sdf_file), sanitize=False)
for i, mol in enumerate(suppl): # sdf file may contain several ligands
ligand_name = f'{sdf_file.stem}_{i}'
# prepare ligand
ligand_pdbqt_file = Path(out_dir, ligand_name + '.pdbqt')
out_sdf_file = Path(out_dir, ligand_name + '_out.sdf')
if out_sdf_file.exists():
with open(out_sdf_file, 'r') as f:
scores.append(
min([float(x.split()[2]) for x in f.readlines()
if x.startswith(' VINA RESULT:')])
)
else:
sdf_to_pdbqt(sdf_file, ligand_pdbqt_file, i)
# center box at ligand's center of mass
cx, cy, cz = mol.GetConformer().GetPositions().mean(0)
# run QuickVina 2
out = os.popen(
f'qvina2.1 --receptor {receptor_pdbqt_file} '
f'--ligand {ligand_pdbqt_file} '
f'--center_x {cx:.4f} --center_y {cy:.4f} --center_z {cz:.4f} '
f'--size_x {size} --size_y {size} --size_z {size} '
f'--exhaustiveness {exhaustiveness}'
).read()
# clean up
ligand_pdbqt_file.unlink()
if '-----+------------+----------+----------' not in out:
scores.append(np.nan)
continue
out_split = out.splitlines()
best_idx = out_split.index('-----+------------+----------+----------') + 1
best_line = out_split[best_idx].split()
assert best_line[0] == '1'
scores.append(float(best_line[1]))
out_pdbqt_file = Path(out_dir, ligand_name + '_out.pdbqt')
if out_pdbqt_file.exists():
os.popen(f'obabel {out_pdbqt_file} -O {out_sdf_file}').read()
# clean up
out_pdbqt_file.unlink()
if return_rdmol:
rdmol = Chem.SDMolSupplier(str(out_sdf_file))[0]
rdmols.append(rdmol)
if return_rdmol:
return scores, rdmols
else:
return scores
if __name__ == '__main__':
parser = argparse.ArgumentParser('QuickVina evaluation')
parser.add_argument('--pdbqt_dir', type=Path,
help='Receptor files in pdbqt format')
parser.add_argument('--sdf_dir', type=Path, default=None,
help='Ligand files in sdf format')
parser.add_argument('--sdf_files', type=Path, nargs='+', default=None)
parser.add_argument('--out_dir', type=Path)
parser.add_argument('--write_csv', action='store_true')
parser.add_argument('--write_dict', action='store_true')
parser.add_argument('--dataset', type=str, default='moad')
args = parser.parse_args()
assert (args.sdf_dir is not None) ^ (args.sdf_files is not None)
args.out_dir.mkdir(exist_ok=True)
results = {'receptor': [], 'ligand': [], 'scores': []}
results_dict = {}
sdf_files = list(args.sdf_dir.glob('[!.]*.sdf')) \
if args.sdf_dir is not None else args.sdf_files
pbar = tqdm(sdf_files)
for sdf_file in pbar:
pbar.set_description(f'Processing {sdf_file.name}')
if args.dataset == 'moad':
"""
Ligand file names should be of the following form:
<receptor-name>_<pocket-id>_<some-suffix>.sdf
where <receptor-name> and <pocket-id> cannot contain any
underscores, e.g.: 1abc-bio1_pocket0_gen.sdf
"""
ligand_name = sdf_file.stem
receptor_name, pocket_id, *suffix = ligand_name.split('_')
suffix = '_'.join(suffix)
receptor_file = Path(args.pdbqt_dir, receptor_name + '.pdbqt')
elif args.dataset == 'crossdocked':
ligand_name = sdf_file.stem
receptor_name = ligand_name[:-4]
receptor_file = Path(args.pdbqt_dir, receptor_name + '.pdbqt')
# try:
scores, rdmols = calculate_qvina2_score(
receptor_file, sdf_file, args.out_dir, return_rdmol=True)
# except AttributeError as e:
# print(e)
# continue
results['receptor'].append(str(receptor_file))
results['ligand'].append(str(sdf_file))
results['scores'].append(scores)
if args.write_dict:
results_dict[ligand_name] = {
'receptor': str(receptor_file),
'ligand': str(sdf_file),
'scores': scores,
'rmdols': rdmols
}
if args.write_csv:
df = pd.DataFrame.from_dict(results)
df.to_csv(Path(args.out_dir, 'qvina2_scores.csv'))
if args.write_dict:
torch.save(results_dict, Path(args.out_dir, 'qvina2_scores.pt'))
|