File size: 8,995 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import numpy as np
from tqdm import tqdm
from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, Crippen, Lipinski, QED
from analysis.SA_Score.sascorer import calculateScore
from analysis.molecule_builder import build_molecule
from copy import deepcopy
class CategoricalDistribution:
EPS = 1e-10
def __init__(self, histogram_dict, mapping):
histogram = np.zeros(len(mapping))
for k, v in histogram_dict.items():
histogram[mapping[k]] = v
# Normalize histogram
self.p = histogram / histogram.sum()
self.mapping = deepcopy(mapping)
def kl_divergence(self, other_sample):
sample_histogram = np.zeros(len(self.mapping))
for x in other_sample:
# sample_histogram[self.mapping[x]] += 1
sample_histogram[x] += 1
# Normalize
q = sample_histogram / sample_histogram.sum()
return -np.sum(self.p * np.log(q / self.p + self.EPS))
def rdmol_to_smiles(rdmol):
mol = Chem.Mol(rdmol)
Chem.RemoveStereochemistry(mol)
mol = Chem.RemoveHs(mol)
return Chem.MolToSmiles(mol)
class BasicMolecularMetrics(object):
def __init__(self, dataset_info, dataset_smiles_list=None,
connectivity_thresh=1.0):
self.atom_decoder = dataset_info['atom_decoder']
if dataset_smiles_list is not None:
dataset_smiles_list = set(dataset_smiles_list)
self.dataset_smiles_list = dataset_smiles_list
self.dataset_info = dataset_info
self.connectivity_thresh = connectivity_thresh
def compute_validity(self, generated):
""" generated: list of couples (positions, atom_types)"""
if len(generated) < 1:
return [], 0.0
valid = []
for mol in generated:
try:
Chem.SanitizeMol(mol)
except ValueError:
continue
valid.append(mol)
return valid, len(valid) / len(generated)
def compute_connectivity(self, valid):
""" Consider molecule connected if its largest fragment contains at
least x% of all atoms, where x is determined by
self.connectivity_thresh (defaults to 100%). """
if len(valid) < 1:
return [], 0.0
connected = []
connected_smiles = []
for mol in valid:
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True)
largest_mol = \
max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
if largest_mol.GetNumAtoms() / mol.GetNumAtoms() >= self.connectivity_thresh:
smiles = rdmol_to_smiles(largest_mol)
if smiles is not None:
connected_smiles.append(smiles)
connected.append(largest_mol)
return connected, len(connected_smiles) / len(valid), connected_smiles
def compute_uniqueness(self, connected):
""" valid: list of SMILES strings."""
if len(connected) < 1 or self.dataset_smiles_list is None:
return [], 0.0
return list(set(connected)), len(set(connected)) / len(connected)
def compute_novelty(self, unique):
if len(unique) < 1:
return [], 0.0
num_novel = 0
novel = []
for smiles in unique:
if smiles not in self.dataset_smiles_list:
novel.append(smiles)
num_novel += 1
return novel, num_novel / len(unique)
def evaluate_rdmols(self, rdmols):
valid, validity = self.compute_validity(rdmols)
print(f"Validity over {len(rdmols)} molecules: {validity * 100 :.2f}%")
connected, connectivity, connected_smiles = \
self.compute_connectivity(valid)
print(f"Connectivity over {len(valid)} valid molecules: "
f"{connectivity * 100 :.2f}%")
unique, uniqueness = self.compute_uniqueness(connected_smiles)
print(f"Uniqueness over {len(connected)} connected molecules: "
f"{uniqueness * 100 :.2f}%")
_, novelty = self.compute_novelty(unique)
print(f"Novelty over {len(unique)} unique connected molecules: "
f"{novelty * 100 :.2f}%")
return [validity, connectivity, uniqueness, novelty], [valid, connected]
def evaluate(self, generated):
""" generated: list of pairs (positions: n x 3, atom_types: n [int])
the positions and atom types should already be masked. """
rdmols = [build_molecule(*graph, self.dataset_info)
for graph in generated]
return self.evaluate_rdmols(rdmols)
class MoleculeProperties:
@staticmethod
def calculate_qed(rdmol):
return QED.qed(rdmol)
@staticmethod
def calculate_sa(rdmol):
sa = calculateScore(rdmol)
return round((10 - sa) / 9, 2) # from pocket2mol
@staticmethod
def calculate_logp(rdmol):
return Crippen.MolLogP(rdmol)
@staticmethod
def calculate_lipinski(rdmol):
rule_1 = Descriptors.ExactMolWt(rdmol) < 500
rule_2 = Lipinski.NumHDonors(rdmol) <= 5
rule_3 = Lipinski.NumHAcceptors(rdmol) <= 10
rule_4 = (logp := Crippen.MolLogP(rdmol) >= -2) & (logp <= 5)
rule_5 = Chem.rdMolDescriptors.CalcNumRotatableBonds(rdmol) <= 10
return np.sum([int(a) for a in [rule_1, rule_2, rule_3, rule_4, rule_5]])
@classmethod
def calculate_diversity(cls, pocket_mols):
if len(pocket_mols) < 2:
return 0.0
div = 0
total = 0
for i in range(len(pocket_mols)):
for j in range(i + 1, len(pocket_mols)):
div += 1 - cls.similarity(pocket_mols[i], pocket_mols[j])
total += 1
return div / total
@staticmethod
def similarity(mol_a, mol_b):
# fp1 = AllChem.GetMorganFingerprintAsBitVect(
# mol_a, 2, nBits=2048, useChirality=False)
# fp2 = AllChem.GetMorganFingerprintAsBitVect(
# mol_b, 2, nBits=2048, useChirality=False)
fp1 = Chem.RDKFingerprint(mol_a)
fp2 = Chem.RDKFingerprint(mol_b)
return DataStructs.TanimotoSimilarity(fp1, fp2)
def evaluate(self, pocket_rdmols):
"""
Run full evaluation
Args:
pocket_rdmols: list of lists, the inner list contains all RDKit
molecules generated for a pocket
Returns:
QED, SA, LogP, Lipinski (per molecule), and Diversity (per pocket)
"""
for pocket in pocket_rdmols:
for mol in pocket:
Chem.SanitizeMol(mol)
assert mol is not None, "only evaluate valid molecules"
all_qed = []
all_sa = []
all_logp = []
all_lipinski = []
per_pocket_diversity = []
for pocket in tqdm(pocket_rdmols):
all_qed.append([self.calculate_qed(mol) for mol in pocket])
all_sa.append([self.calculate_sa(mol) for mol in pocket])
all_logp.append([self.calculate_logp(mol) for mol in pocket])
all_lipinski.append([self.calculate_lipinski(mol) for mol in pocket])
per_pocket_diversity.append(self.calculate_diversity(pocket))
print(f"{sum([len(p) for p in pocket_rdmols])} molecules from "
f"{len(pocket_rdmols)} pockets evaluated.")
qed_flattened = [x for px in all_qed for x in px]
print(f"QED: {np.mean(qed_flattened):.3f} \pm {np.std(qed_flattened):.2f}")
sa_flattened = [x for px in all_sa for x in px]
print(f"SA: {np.mean(sa_flattened):.3f} \pm {np.std(sa_flattened):.2f}")
logp_flattened = [x for px in all_logp for x in px]
print(f"LogP: {np.mean(logp_flattened):.3f} \pm {np.std(logp_flattened):.2f}")
lipinski_flattened = [x for px in all_lipinski for x in px]
print(f"Lipinski: {np.mean(lipinski_flattened):.3f} \pm {np.std(lipinski_flattened):.2f}")
print(f"Diversity: {np.mean(per_pocket_diversity):.3f} \pm {np.std(per_pocket_diversity):.2f}")
return all_qed, all_sa, all_logp, all_lipinski, per_pocket_diversity
def evaluate_mean(self, rdmols):
"""
Run full evaluation and return mean of each property
Args:
rdmols: list of RDKit molecules
Returns:
QED, SA, LogP, Lipinski, and Diversity
"""
if len(rdmols) < 1:
return 0.0, 0.0, 0.0, 0.0, 0.0
for mol in rdmols:
Chem.SanitizeMol(mol)
assert mol is not None, "only evaluate valid molecules"
qed = np.mean([self.calculate_qed(mol) for mol in rdmols])
sa = np.mean([self.calculate_sa(mol) for mol in rdmols])
logp = np.mean([self.calculate_logp(mol) for mol in rdmols])
lipinski = np.mean([self.calculate_lipinski(mol) for mol in rdmols])
diversity = self.calculate_diversity(rdmols)
return qed, sa, logp, lipinski, diversity
|