File size: 7,874 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import warnings
import tempfile
import torch
import numpy as np
from rdkit import Chem
from rdkit.Chem.rdForceFieldHelpers import UFFOptimizeMolecule, UFFHasAllMoleculeParams
import openbabel
import utils
from constants import bonds1, bonds2, bonds3, margin1, margin2, margin3, \
bond_dict
def get_bond_order(atom1, atom2, distance):
distance = 100 * distance # We change the metric
if atom1 in bonds3 and atom2 in bonds3[atom1] and distance < bonds3[atom1][atom2] + margin3:
return 3 # Triple
if atom1 in bonds2 and atom2 in bonds2[atom1] and distance < bonds2[atom1][atom2] + margin2:
return 2 # Double
if atom1 in bonds1 and atom2 in bonds1[atom1] and distance < bonds1[atom1][atom2] + margin1:
return 1 # Single
return 0 # No bond
def get_bond_order_batch(atoms1, atoms2, distances, dataset_info):
if isinstance(atoms1, np.ndarray):
atoms1 = torch.from_numpy(atoms1)
if isinstance(atoms2, np.ndarray):
atoms2 = torch.from_numpy(atoms2)
if isinstance(distances, np.ndarray):
distances = torch.from_numpy(distances)
distances = 100 * distances # We change the metric
bonds1 = torch.tensor(dataset_info['bonds1'], device=atoms1.device)
bonds2 = torch.tensor(dataset_info['bonds2'], device=atoms1.device)
bonds3 = torch.tensor(dataset_info['bonds3'], device=atoms1.device)
bond_types = torch.zeros_like(atoms1) # 0: No bond
# Single
bond_types[distances < bonds1[atoms1, atoms2] + margin1] = 1
# Double (note that already assigned single bonds will be overwritten)
bond_types[distances < bonds2[atoms1, atoms2] + margin2] = 2
# Triple
bond_types[distances < bonds3[atoms1, atoms2] + margin3] = 3
return bond_types
def make_mol_openbabel(positions, atom_types, atom_decoder):
"""
Build an RDKit molecule using openbabel for creating bonds
Args:
positions: N x 3
atom_types: N
atom_decoder: maps indices to atom types
Returns:
rdkit molecule
"""
atom_types = [atom_decoder[x] for x in atom_types]
with tempfile.NamedTemporaryFile() as tmp:
tmp_file = tmp.name
# Write xyz file
utils.write_xyz_file(positions, atom_types, tmp_file)
# Convert to sdf file with openbabel
# openbabel will add bonds
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("xyz", "sdf")
ob_mol = openbabel.OBMol()
obConversion.ReadFile(ob_mol, tmp_file)
obConversion.WriteFile(ob_mol, tmp_file)
# Read sdf file with RDKit
tmp_mol = Chem.SDMolSupplier(tmp_file, sanitize=False)[0]
# Build new molecule. This is a workaround to remove radicals.
mol = Chem.RWMol()
for atom in tmp_mol.GetAtoms():
mol.AddAtom(Chem.Atom(atom.GetSymbol()))
mol.AddConformer(tmp_mol.GetConformer(0))
for bond in tmp_mol.GetBonds():
mol.AddBond(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(),
bond.GetBondType())
return mol
def make_mol_edm(positions, atom_types, dataset_info, add_coords):
"""
Equivalent to EDM's way of building RDKit molecules
"""
n = len(positions)
# (X, A, E): atom_types, adjacency matrix, edge_types
# X: N (int)
# A: N x N (bool) -> (binary adjacency matrix)
# E: N x N (int) -> (bond type, 0 if no bond)
pos = positions.unsqueeze(0) # add batch dim
dists = torch.cdist(pos, pos, p=2).squeeze(0).view(-1) # remove batch dim & flatten
atoms1, atoms2 = torch.cartesian_prod(atom_types, atom_types).T
E_full = get_bond_order_batch(atoms1, atoms2, dists, dataset_info).view(n, n)
E = torch.tril(E_full, diagonal=-1) # Warning: the graph should be DIRECTED
A = E.bool()
X = atom_types
mol = Chem.RWMol()
for atom in X:
a = Chem.Atom(dataset_info["atom_decoder"][atom.item()])
mol.AddAtom(a)
all_bonds = torch.nonzero(A)
for bond in all_bonds:
mol.AddBond(bond[0].item(), bond[1].item(),
bond_dict[E[bond[0], bond[1]].item()])
if add_coords:
conf = Chem.Conformer(mol.GetNumAtoms())
for i in range(mol.GetNumAtoms()):
conf.SetAtomPosition(i, (positions[i, 0].item(),
positions[i, 1].item(),
positions[i, 2].item()))
mol.AddConformer(conf)
return mol
def build_molecule(positions, atom_types, dataset_info, add_coords=False,
use_openbabel=True):
"""
Build RDKit molecule
Args:
positions: N x 3
atom_types: N
dataset_info: dict
add_coords: Add conformer to mol (always added if use_openbabel=True)
use_openbabel: use OpenBabel to create bonds
Returns:
RDKit molecule
"""
if use_openbabel:
mol = make_mol_openbabel(positions, atom_types,
dataset_info["atom_decoder"])
else:
mol = make_mol_edm(positions, atom_types, dataset_info, add_coords)
return mol
def process_molecule(rdmol, add_hydrogens=False, sanitize=False, relax_iter=0,
largest_frag=False):
"""
Apply filters to an RDKit molecule. Makes a copy first.
Args:
rdmol: rdkit molecule
add_hydrogens
sanitize
relax_iter: maximum number of UFF optimization iterations
largest_frag: filter out the largest fragment in a set of disjoint
molecules
Returns:
RDKit molecule or None if it does not pass the filters
"""
# Create a copy
mol = Chem.Mol(rdmol)
if sanitize:
try:
Chem.SanitizeMol(mol)
except ValueError:
warnings.warn('Sanitization failed. Returning None.')
return None
if add_hydrogens:
mol = Chem.AddHs(mol, addCoords=(len(mol.GetConformers()) > 0))
if largest_frag:
mol_frags = Chem.GetMolFrags(mol, asMols=True, sanitizeFrags=False)
mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
if sanitize:
# sanitize the updated molecule
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
if relax_iter > 0:
if not UFFHasAllMoleculeParams(mol):
warnings.warn('UFF parameters not available for all atoms. '
'Returning None.')
return None
try:
uff_relax(mol, relax_iter)
if sanitize:
# sanitize the updated molecule
Chem.SanitizeMol(mol)
except (RuntimeError, ValueError) as e:
return None
return mol
def uff_relax(mol, max_iter=200):
"""
Uses RDKit's universal force field (UFF) implementation to optimize a
molecule.
"""
more_iterations_required = UFFOptimizeMolecule(mol, maxIters=max_iter)
if more_iterations_required:
warnings.warn(f'Maximum number of FF iterations reached. '
f'Returning molecule after {max_iter} relaxation steps.')
return more_iterations_required
def filter_rd_mol(rdmol):
"""
Filter out RDMols if they have a 3-3 ring intersection
adapted from:
https://github.com/luost26/3D-Generative-SBDD/blob/main/utils/chem.py
"""
ring_info = rdmol.GetRingInfo()
ring_info.AtomRings()
rings = [set(r) for r in ring_info.AtomRings()]
# 3-3 ring intersection
for i, ring_a in enumerate(rings):
if len(ring_a) != 3:
continue
for j, ring_b in enumerate(rings):
if i <= j:
continue
inter = ring_a.intersection(ring_b)
if (len(ring_b) == 3) and (len(inter) > 0):
return False
return True
|