File size: 49,401 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 |
import math
from typing import Dict
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch_scatter import scatter_add, scatter_mean
import utils
class EnVariationalDiffusion(nn.Module):
"""
The E(n) Diffusion Module.
"""
def __init__(
self,
dynamics: nn.Module, atom_nf: int, residue_nf: int,
n_dims: int, size_histogram: Dict,
timesteps: int = 1000, parametrization='eps',
noise_schedule='learned', noise_precision=1e-4,
loss_type='vlb', norm_values=(1., 1.), norm_biases=(None, 0.),
virtual_node_idx=None):
super().__init__()
assert loss_type in {'vlb', 'l2'}
self.loss_type = loss_type
if noise_schedule == 'learned':
assert loss_type == 'vlb', 'A noise schedule can only be learned' \
' with a vlb objective.'
# Only supported parametrization.
assert parametrization == 'eps'
if noise_schedule == 'learned':
self.gamma = GammaNetwork()
else:
self.gamma = PredefinedNoiseSchedule(noise_schedule,
timesteps=timesteps,
precision=noise_precision)
# The network that will predict the denoising.
self.dynamics = dynamics
self.atom_nf = atom_nf
self.residue_nf = residue_nf
self.n_dims = n_dims
self.num_classes = self.atom_nf
self.T = timesteps
self.parametrization = parametrization
self.norm_values = norm_values
self.norm_biases = norm_biases
self.register_buffer('buffer', torch.zeros(1))
# distribution of nodes
self.size_distribution = DistributionNodes(size_histogram)
# indicate if virtual nodes are present
self.vnode_idx = virtual_node_idx
if noise_schedule != 'learned':
self.check_issues_norm_values()
def check_issues_norm_values(self, num_stdevs=8):
zeros = torch.zeros((1, 1))
gamma_0 = self.gamma(zeros)
sigma_0 = self.sigma(gamma_0, target_tensor=zeros).item()
# Checked if 1 / norm_value is still larger than 10 * standard
# deviation.
norm_value = self.norm_values[1]
if sigma_0 * num_stdevs > 1. / norm_value:
raise ValueError(
f'Value for normalization value {norm_value} probably too '
f'large with sigma_0 {sigma_0:.5f} and '
f'1 / norm_value = {1. / norm_value}')
def sigma_and_alpha_t_given_s(self, gamma_t: torch.Tensor,
gamma_s: torch.Tensor,
target_tensor: torch.Tensor):
"""
Computes sigma t given s, using gamma_t and gamma_s. Used during sampling.
These are defined as:
alpha t given s = alpha t / alpha s,
sigma t given s = sqrt(1 - (alpha t given s) ^2 ).
"""
sigma2_t_given_s = self.inflate_batch_array(
-torch.expm1(F.softplus(gamma_s) - F.softplus(gamma_t)), target_tensor
)
# alpha_t_given_s = alpha_t / alpha_s
log_alpha2_t = F.logsigmoid(-gamma_t)
log_alpha2_s = F.logsigmoid(-gamma_s)
log_alpha2_t_given_s = log_alpha2_t - log_alpha2_s
alpha_t_given_s = torch.exp(0.5 * log_alpha2_t_given_s)
alpha_t_given_s = self.inflate_batch_array(
alpha_t_given_s, target_tensor)
sigma_t_given_s = torch.sqrt(sigma2_t_given_s)
return sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s
def kl_prior_with_pocket(self, xh_lig, xh_pocket, mask_lig, mask_pocket,
num_nodes):
"""Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1).
This is essentially a lot of work for something that is in practice
negligible in the loss. However, you compute it so that you see it when
you've made a mistake in your noise schedule.
"""
batch_size = len(num_nodes)
# Compute the last alpha value, alpha_T.
ones = torch.ones((batch_size, 1), device=xh_lig.device)
gamma_T = self.gamma(ones)
alpha_T = self.alpha(gamma_T, xh_lig)
# Compute means.
mu_T_lig = alpha_T[mask_lig] * xh_lig
mu_T_lig_x, mu_T_lig_h = mu_T_lig[:, :self.n_dims], \
mu_T_lig[:, self.n_dims:]
# Compute standard deviations (only batch axis for x-part, inflated for h-part).
sigma_T_x = self.sigma(gamma_T, mu_T_lig_x).squeeze()
sigma_T_h = self.sigma(gamma_T, mu_T_lig_h).squeeze()
# Compute means.
mu_T_pocket = alpha_T[mask_pocket] * xh_pocket
mu_T_pocket_x, mu_T_pocket_h = mu_T_pocket[:, :self.n_dims], \
mu_T_pocket[:, self.n_dims:]
# Compute KL for h-part.
zeros_lig = torch.zeros_like(mu_T_lig_h)
zeros_pocket = torch.zeros_like(mu_T_pocket_h)
ones = torch.ones_like(sigma_T_h)
mu_norm2 = self.sum_except_batch((mu_T_lig_h - zeros_lig) ** 2, mask_lig) + \
self.sum_except_batch((mu_T_pocket_h - zeros_pocket) ** 2, mask_pocket)
kl_distance_h = self.gaussian_KL(mu_norm2, sigma_T_h, ones, d=1)
# Compute KL for x-part.
zeros_lig = torch.zeros_like(mu_T_lig_x)
zeros_pocket = torch.zeros_like(mu_T_pocket_x)
ones = torch.ones_like(sigma_T_x)
mu_norm2 = self.sum_except_batch((mu_T_lig_x - zeros_lig) ** 2, mask_lig) + \
self.sum_except_batch((mu_T_pocket_x - zeros_pocket) ** 2, mask_pocket)
subspace_d = self.subspace_dimensionality(num_nodes)
kl_distance_x = self.gaussian_KL(mu_norm2, sigma_T_x, ones, subspace_d)
return kl_distance_x + kl_distance_h
def compute_x_pred(self, net_out, zt, gamma_t, batch_mask):
"""Commputes x_pred, i.e. the most likely prediction of x."""
if self.parametrization == 'x':
x_pred = net_out
elif self.parametrization == 'eps':
sigma_t = self.sigma(gamma_t, target_tensor=net_out)
alpha_t = self.alpha(gamma_t, target_tensor=net_out)
eps_t = net_out
x_pred = 1. / alpha_t[batch_mask] * (zt - sigma_t[batch_mask] * eps_t)
else:
raise ValueError(self.parametrization)
return x_pred
def log_constants_p_x_given_z0(self, n_nodes, device):
"""Computes p(x|z0)."""
batch_size = len(n_nodes)
degrees_of_freedom_x = self.subspace_dimensionality(n_nodes)
zeros = torch.zeros((batch_size, 1), device=device)
gamma_0 = self.gamma(zeros)
# Recall that sigma_x = sqrt(sigma_0^2 / alpha_0^2) = SNR(-0.5 gamma_0).
log_sigma_x = 0.5 * gamma_0.view(batch_size)
return degrees_of_freedom_x * (- log_sigma_x - 0.5 * np.log(2 * np.pi))
def log_pxh_given_z0_without_constants(
self, ligand, z_0_lig, eps_lig, net_out_lig,
pocket, z_0_pocket, eps_pocket, net_out_pocket,
gamma_0, epsilon=1e-10):
# Discrete properties are predicted directly from z_t.
z_h_lig = z_0_lig[:, self.n_dims:]
z_h_pocket = z_0_pocket[:, self.n_dims:]
# Take only part over x.
eps_lig_x = eps_lig[:, :self.n_dims]
net_lig_x = net_out_lig[:, :self.n_dims]
eps_pocket_x = eps_pocket[:, :self.n_dims]
net_pocket_x = net_out_pocket[:, :self.n_dims]
# Compute sigma_0 and rescale to the integer scale of the data.
sigma_0 = self.sigma(gamma_0, target_tensor=z_0_lig)
sigma_0_cat = sigma_0 * self.norm_values[1]
# Computes the error for the distribution
# N(x | 1 / alpha_0 z_0 + sigma_0/alpha_0 eps_0, sigma_0 / alpha_0),
# the weighting in the epsilon parametrization is exactly '1'.
log_p_x_given_z0_without_constants_ligand = -0.5 * (
self.sum_except_batch((eps_lig_x - net_lig_x) ** 2, ligand['mask'])
)
log_p_x_given_z0_without_constants_pocket = -0.5 * (
self.sum_except_batch((eps_pocket_x - net_pocket_x) ** 2,
pocket['mask'])
)
# Compute delta indicator masks.
# un-normalize
ligand_onehot = ligand['one_hot'] * self.norm_values[1] + self.norm_biases[1]
pocket_onehot = pocket['one_hot'] * self.norm_values[1] + self.norm_biases[1]
estimated_ligand_onehot = z_h_lig * self.norm_values[1] + self.norm_biases[1]
estimated_pocket_onehot = z_h_pocket * self.norm_values[1] + self.norm_biases[1]
# Centered h_cat around 1, since onehot encoded.
centered_ligand_onehot = estimated_ligand_onehot - 1
centered_pocket_onehot = estimated_pocket_onehot - 1
# Compute integrals from 0.5 to 1.5 of the normal distribution
# N(mean=z_h_cat, stdev=sigma_0_cat)
log_ph_cat_proportional_ligand = torch.log(
self.cdf_standard_gaussian((centered_ligand_onehot + 0.5) / sigma_0_cat[ligand['mask']])
- self.cdf_standard_gaussian((centered_ligand_onehot - 0.5) / sigma_0_cat[ligand['mask']])
+ epsilon
)
log_ph_cat_proportional_pocket = torch.log(
self.cdf_standard_gaussian((centered_pocket_onehot + 0.5) / sigma_0_cat[pocket['mask']])
- self.cdf_standard_gaussian((centered_pocket_onehot - 0.5) / sigma_0_cat[pocket['mask']])
+ epsilon
)
# Normalize the distribution over the categories.
log_Z = torch.logsumexp(log_ph_cat_proportional_ligand, dim=1,
keepdim=True)
log_probabilities_ligand = log_ph_cat_proportional_ligand - log_Z
log_Z = torch.logsumexp(log_ph_cat_proportional_pocket, dim=1,
keepdim=True)
log_probabilities_pocket = log_ph_cat_proportional_pocket - log_Z
# Select the log_prob of the current category using the onehot
# representation.
log_ph_given_z0_ligand = self.sum_except_batch(
log_probabilities_ligand * ligand_onehot, ligand['mask'])
log_ph_given_z0_pocket = self.sum_except_batch(
log_probabilities_pocket * pocket_onehot, pocket['mask'])
# Combine log probabilities of ligand and pocket for h.
log_ph_given_z0 = log_ph_given_z0_ligand + log_ph_given_z0_pocket
return log_p_x_given_z0_without_constants_ligand, \
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0
def sample_p_xh_given_z0(self, z0_lig, z0_pocket, lig_mask, pocket_mask,
batch_size, fix_noise=False):
"""Samples x ~ p(x|z0)."""
t_zeros = torch.zeros(size=(batch_size, 1), device=z0_lig.device)
gamma_0 = self.gamma(t_zeros)
# Computes sqrt(sigma_0^2 / alpha_0^2)
sigma_x = self.SNR(-0.5 * gamma_0)
net_out_lig, net_out_pocket = self.dynamics(
z0_lig, z0_pocket, t_zeros, lig_mask, pocket_mask)
# Compute mu for p(zs | zt).
mu_x_lig = self.compute_x_pred(net_out_lig, z0_lig, gamma_0, lig_mask)
mu_x_pocket = self.compute_x_pred(net_out_pocket, z0_pocket, gamma_0,
pocket_mask)
xh_lig, xh_pocket = self.sample_normal(mu_x_lig, mu_x_pocket, sigma_x,
lig_mask, pocket_mask, fix_noise)
x_lig, h_lig = self.unnormalize(
xh_lig[:, :self.n_dims], z0_lig[:, self.n_dims:])
x_pocket, h_pocket = self.unnormalize(
xh_pocket[:, :self.n_dims], z0_pocket[:, self.n_dims:])
h_lig = F.one_hot(torch.argmax(h_lig, dim=1), self.atom_nf)
h_pocket = F.one_hot(torch.argmax(h_pocket, dim=1), self.residue_nf)
return x_lig, h_lig, x_pocket, h_pocket
def sample_normal(self, mu_lig, mu_pocket, sigma, lig_mask, pocket_mask,
fix_noise=False):
"""Samples from a Normal distribution."""
if fix_noise:
# bs = 1 if fix_noise else mu.size(0)
raise NotImplementedError("fix_noise option isn't implemented yet")
eps_lig, eps_pocket = self.sample_combined_position_feature_noise(
lig_mask, pocket_mask)
return mu_lig + sigma[lig_mask] * eps_lig, \
mu_pocket + sigma[pocket_mask] * eps_pocket
def noised_representation(self, xh_lig, xh_pocket, lig_mask, pocket_mask,
gamma_t):
# Compute alpha_t and sigma_t from gamma.
alpha_t = self.alpha(gamma_t, xh_lig)
sigma_t = self.sigma(gamma_t, xh_lig)
# Sample zt ~ Normal(alpha_t x, sigma_t)
eps_lig, eps_pocket = self.sample_combined_position_feature_noise(
lig_mask, pocket_mask)
# Sample z_t given x, h for timestep t, from q(z_t | x, h)
z_t_lig = alpha_t[lig_mask] * xh_lig + sigma_t[lig_mask] * eps_lig
z_t_pocket = alpha_t[pocket_mask] * xh_pocket + \
sigma_t[pocket_mask] * eps_pocket
return z_t_lig, z_t_pocket, eps_lig, eps_pocket
def log_pN(self, N_lig, N_pocket):
"""
Prior on the sample size for computing
log p(x,h,N) = log p(x,h|N) + log p(N), where log p(x,h|N) is the
model's output
Args:
N: array of sample sizes
Returns:
log p(N)
"""
log_pN = self.size_distribution.log_prob(N_lig, N_pocket)
return log_pN
def delta_log_px(self, num_nodes):
return -self.subspace_dimensionality(num_nodes) * \
np.log(self.norm_values[0])
def forward(self, ligand, pocket, return_info=False):
"""
Computes the loss and NLL terms
"""
# Normalize data, take into account volume change in x.
ligand, pocket = self.normalize(ligand, pocket)
# Likelihood change due to normalization
delta_log_px = self.delta_log_px(ligand['size'] + pocket['size'])
# Sample a timestep t for each example in batch
# At evaluation time, loss_0 will be computed separately to decrease
# variance in the estimator (costs two forward passes)
lowest_t = 0 if self.training else 1
t_int = torch.randint(
lowest_t, self.T + 1, size=(ligand['size'].size(0), 1),
device=ligand['x'].device).float()
s_int = t_int - 1 # previous timestep
# Masks: important to compute log p(x | z0).
t_is_zero = (t_int == 0).float()
t_is_not_zero = 1 - t_is_zero
# Normalize t to [0, 1]. Note that the negative
# step of s will never be used, since then p(x | z0) is computed.
s = s_int / self.T
t = t_int / self.T
# Compute gamma_s and gamma_t via the network.
gamma_s = self.inflate_batch_array(self.gamma(s), ligand['x'])
gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x'])
# Concatenate x, and h[categorical].
xh_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
xh_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
# Find noised representation
z_t_lig, z_t_pocket, eps_t_lig, eps_t_pocket = \
self.noised_representation(xh_lig, xh_pocket, ligand['mask'],
pocket['mask'], gamma_t)
# Neural net prediction.
net_out_lig, net_out_pocket = self.dynamics(
z_t_lig, z_t_pocket, t, ligand['mask'], pocket['mask'])
# For LJ loss term
xh_lig_hat = self.xh_given_zt_and_epsilon(z_t_lig, net_out_lig, gamma_t,
ligand['mask'])
# Compute the L2 error.
error_t_lig = self.sum_except_batch((eps_t_lig - net_out_lig) ** 2,
ligand['mask'])
error_t_pocket = self.sum_except_batch(
(eps_t_pocket - net_out_pocket) ** 2, pocket['mask'])
# Compute weighting with SNR: (1 - SNR(s-t)) for epsilon parametrization
SNR_weight = (1 - self.SNR(gamma_s - gamma_t)).squeeze(1)
assert error_t_lig.size() == SNR_weight.size()
# The _constants_ depending on sigma_0 from the
# cross entropy term E_q(z0 | x) [log p(x | z0)].
neg_log_constants = -self.log_constants_p_x_given_z0(
n_nodes=ligand['size'] + pocket['size'], device=error_t_lig.device)
# The KL between q(zT | x) and p(zT) = Normal(0, 1).
# Should be close to zero.
kl_prior = self.kl_prior_with_pocket(
xh_lig, xh_pocket, ligand['mask'], pocket['mask'],
ligand['size'] + pocket['size'])
if self.training:
# Computes the L_0 term (even if gamma_t is not actually gamma_0)
# and this will later be selected via masking.
log_p_x_given_z0_without_constants_ligand, \
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0 = \
self.log_pxh_given_z0_without_constants(
ligand, z_t_lig, eps_t_lig, net_out_lig,
pocket, z_t_pocket, eps_t_pocket, net_out_pocket, gamma_t)
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand * \
t_is_zero.squeeze()
loss_0_x_pocket = -log_p_x_given_z0_without_constants_pocket * \
t_is_zero.squeeze()
loss_0_h = -log_ph_given_z0 * t_is_zero.squeeze()
# apply t_is_zero mask
error_t_lig = error_t_lig * t_is_not_zero.squeeze()
error_t_pocket = error_t_pocket * t_is_not_zero.squeeze()
else:
# Compute noise values for t = 0.
t_zeros = torch.zeros_like(s)
gamma_0 = self.inflate_batch_array(self.gamma(t_zeros), ligand['x'])
# Sample z_0 given x, h for timestep t, from q(z_t | x, h)
z_0_lig, z_0_pocket, eps_0_lig, eps_0_pocket = \
self.noised_representation(xh_lig, xh_pocket, ligand['mask'],
pocket['mask'], gamma_0)
net_out_0_lig, net_out_0_pocket = self.dynamics(
z_0_lig, z_0_pocket, t_zeros, ligand['mask'], pocket['mask'])
log_p_x_given_z0_without_constants_ligand, \
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0 = \
self.log_pxh_given_z0_without_constants(
ligand, z_0_lig, eps_0_lig, net_out_0_lig,
pocket, z_0_pocket, eps_0_pocket, net_out_0_pocket, gamma_0)
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand
loss_0_x_pocket = -log_p_x_given_z0_without_constants_pocket
loss_0_h = -log_ph_given_z0
# sample size prior
log_pN = self.log_pN(ligand['size'], pocket['size'])
info = {
'eps_hat_lig_x': scatter_mean(
net_out_lig[:, :self.n_dims].abs().mean(1), ligand['mask'],
dim=0).mean(),
'eps_hat_lig_h': scatter_mean(
net_out_lig[:, self.n_dims:].abs().mean(1), ligand['mask'],
dim=0).mean(),
'eps_hat_pocket_x': scatter_mean(
net_out_pocket[:, :self.n_dims].abs().mean(1), pocket['mask'],
dim=0).mean(),
'eps_hat_pocket_h': scatter_mean(
net_out_pocket[:, self.n_dims:].abs().mean(1), pocket['mask'],
dim=0).mean(),
}
loss_terms = (delta_log_px, error_t_lig, error_t_pocket, SNR_weight,
loss_0_x_ligand, loss_0_x_pocket, loss_0_h,
neg_log_constants, kl_prior, log_pN,
t_int.squeeze(), xh_lig_hat)
return (*loss_terms, info) if return_info else loss_terms
def xh_given_zt_and_epsilon(self, z_t, epsilon, gamma_t, batch_mask):
""" Equation (7) in the EDM paper """
alpha_t = self.alpha(gamma_t, z_t)
sigma_t = self.sigma(gamma_t, z_t)
xh = z_t / alpha_t[batch_mask] - epsilon * sigma_t[batch_mask] / \
alpha_t[batch_mask]
return xh
def sample_p_zt_given_zs(self, zs_lig, zs_pocket, ligand_mask, pocket_mask,
gamma_t, gamma_s, fix_noise=False):
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zs_lig)
mu_lig = alpha_t_given_s[ligand_mask] * zs_lig
mu_pocket = alpha_t_given_s[pocket_mask] * zs_pocket
zt_lig, zt_pocket = self.sample_normal(
mu_lig, mu_pocket, sigma_t_given_s, ligand_mask, pocket_mask,
fix_noise)
# Remove center of mass
zt_x = self.remove_mean_batch(
torch.cat((zt_lig[:, :self.n_dims], zt_pocket[:, :self.n_dims]),
dim=0),
torch.cat((ligand_mask, pocket_mask))
)
zt_lig = torch.cat((zt_x[:len(ligand_mask)],
zt_lig[:, self.n_dims:]), dim=1)
zt_pocket = torch.cat((zt_x[len(ligand_mask):],
zt_pocket[:, self.n_dims:]), dim=1)
return zt_lig, zt_pocket
def sample_p_zs_given_zt(self, s, t, zt_lig, zt_pocket, ligand_mask,
pocket_mask, fix_noise=False):
"""Samples from zs ~ p(zs | zt). Only used during sampling."""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zt_lig)
sigma_s = self.sigma(gamma_s, target_tensor=zt_lig)
sigma_t = self.sigma(gamma_t, target_tensor=zt_lig)
# Neural net prediction.
eps_t_lig, eps_t_pocket = self.dynamics(
zt_lig, zt_pocket, t, ligand_mask, pocket_mask)
# Compute mu for p(zs | zt).
combined_mask = torch.cat((ligand_mask, pocket_mask))
self.assert_mean_zero_with_mask(
torch.cat((zt_lig[:, :self.n_dims],
zt_pocket[:, :self.n_dims]), dim=0),
combined_mask)
self.assert_mean_zero_with_mask(
torch.cat((eps_t_lig[:, :self.n_dims],
eps_t_pocket[:, :self.n_dims]), dim=0),
combined_mask)
# Note: mu_{t->s} = 1 / alpha_{t|s} z_t - sigma_{t|s}^2 / sigma_t / alpha_{t|s} epsilon
# follows from the definition of mu_{t->s} and Equ. (7) in the EDM paper
mu_lig = zt_lig / alpha_t_given_s[ligand_mask] - \
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[ligand_mask] * \
eps_t_lig
mu_pocket = zt_pocket / alpha_t_given_s[pocket_mask] - \
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[pocket_mask] * \
eps_t_pocket
# Compute sigma for p(zs | zt).
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample zs given the paramters derived from zt.
zs_lig, zs_pocket = self.sample_normal(mu_lig, mu_pocket, sigma,
ligand_mask, pocket_mask,
fix_noise)
# Project down to avoid numerical runaway of the center of gravity.
zs_x = self.remove_mean_batch(
torch.cat((zs_lig[:, :self.n_dims],
zs_pocket[:, :self.n_dims]), dim=0),
torch.cat((ligand_mask, pocket_mask))
)
zs_lig = torch.cat((zs_x[:len(ligand_mask)],
zs_lig[:, self.n_dims:]), dim=1)
zs_pocket = torch.cat((zs_x[len(ligand_mask):],
zs_pocket[:, self.n_dims:]), dim=1)
return zs_lig, zs_pocket
def sample_combined_position_feature_noise(self, lig_indices,
pocket_indices):
"""
Samples mean-centered normal noise for z_x, and standard normal noise
for z_h.
"""
z_x = self.sample_center_gravity_zero_gaussian_batch(
size=(len(lig_indices) + len(pocket_indices), self.n_dims),
lig_indices=lig_indices,
pocket_indices=pocket_indices
)
z_h_lig = self.sample_gaussian(
size=(len(lig_indices), self.atom_nf),
device=lig_indices.device)
z_lig = torch.cat([z_x[:len(lig_indices)], z_h_lig], dim=1)
z_h_pocket = self.sample_gaussian(
size=(len(pocket_indices), self.residue_nf),
device=pocket_indices.device)
z_pocket = torch.cat([z_x[len(lig_indices):], z_h_pocket], dim=1)
return z_lig, z_pocket
@torch.no_grad()
def sample(self, n_samples, num_nodes_lig, num_nodes_pocket,
return_frames=1, timesteps=None, device='cpu'):
"""
Draw samples from the generative model. Optionally, return intermediate
states for visualization purposes.
"""
timesteps = self.T if timesteps is None else timesteps
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
lig_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_lig,
device)
pocket_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_pocket,
device)
combined_mask = torch.cat((lig_mask, pocket_mask))
z_lig, z_pocket = self.sample_combined_position_feature_noise(
lig_mask, pocket_mask)
self.assert_mean_zero_with_mask(
torch.cat((z_lig[:, :self.n_dims], z_pocket[:, :self.n_dims]), dim=0),
combined_mask
)
out_lig = torch.zeros((return_frames,) + z_lig.size(),
device=z_lig.device)
out_pocket = torch.zeros((return_frames,) + z_pocket.size(),
device=z_pocket.device)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
for s in reversed(range(0, timesteps)):
s_array = torch.full((n_samples, 1), fill_value=s,
device=z_lig.device)
t_array = s_array + 1
s_array = s_array / timesteps
t_array = t_array / timesteps
z_lig, z_pocket = self.sample_p_zs_given_zt(
s_array, t_array, z_lig, z_pocket, lig_mask, pocket_mask)
# save frame
if (s * return_frames) % timesteps == 0:
idx = (s * return_frames) // timesteps
out_lig[idx], out_pocket[idx] = \
self.unnormalize_z(z_lig, z_pocket)
# Finally sample p(x, h | z_0).
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
z_lig, z_pocket, lig_mask, pocket_mask, n_samples)
self.assert_mean_zero_with_mask(
torch.cat((x_lig, x_pocket), dim=0), combined_mask
)
# Correct CoM drift for examples without intermediate states
if return_frames == 1:
x = torch.cat((x_lig, x_pocket))
max_cog = scatter_add(x, combined_mask, dim=0).abs().max().item()
if max_cog > 5e-2:
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting '
f'the positions down.')
x = self.remove_mean_batch(x, combined_mask)
x_lig, x_pocket = x[:len(x_lig)], x[len(x_lig):]
# Overwrite last frame with the resulting x and h.
out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
# remove frame dimension if only the final molecule is returned
return out_lig.squeeze(0), out_pocket.squeeze(0), lig_mask, pocket_mask
def get_repaint_schedule(self, resamplings, jump_length, timesteps):
""" Each integer in the schedule list describes how many denoising steps
need to be applied before jumping back """
repaint_schedule = []
curr_t = 0
while curr_t < timesteps:
if curr_t + jump_length < timesteps:
if len(repaint_schedule) > 0:
repaint_schedule[-1] += jump_length
repaint_schedule.extend([jump_length] * (resamplings - 1))
else:
repaint_schedule.extend([jump_length] * resamplings)
curr_t += jump_length
else:
residual = (timesteps - curr_t)
if len(repaint_schedule) > 0:
repaint_schedule[-1] += residual
else:
repaint_schedule.append(residual)
curr_t += residual
return list(reversed(repaint_schedule))
@torch.no_grad()
def inpaint(self, ligand, pocket, lig_fixed, pocket_fixed, resamplings=1,
jump_length=1, return_frames=1, timesteps=None):
"""
Draw samples from the generative model while fixing parts of the input.
Optionally, return intermediate states for visualization purposes.
See:
Lugmayr, Andreas, et al.
"Repaint: Inpainting using denoising diffusion probabilistic models."
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022.
"""
timesteps = self.T if timesteps is None else timesteps
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
assert jump_length == 1 or return_frames == 1, \
"Chain visualization is only implemented for jump_length=1"
if len(lig_fixed.size()) == 1:
lig_fixed = lig_fixed.unsqueeze(1)
if len(pocket_fixed.size()) == 1:
pocket_fixed = pocket_fixed.unsqueeze(1)
ligand, pocket = self.normalize(ligand, pocket)
n_samples = len(ligand['size'])
combined_mask = torch.cat((ligand['mask'], pocket['mask']))
xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1)
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1)
# Center initial system, subtract COM of known parts
mean_known = scatter_mean(
torch.cat((ligand['x'][lig_fixed.bool().view(-1)],
pocket['x'][pocket_fixed.bool().view(-1)])),
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)],
pocket['mask'][pocket_fixed.bool().view(-1)])),
dim=0
)
xh0_lig[:, :self.n_dims] = \
xh0_lig[:, :self.n_dims] - mean_known[ligand['mask']]
xh0_pocket[:, :self.n_dims] = \
xh0_pocket[:, :self.n_dims] - mean_known[pocket['mask']]
# Noised representation at step t=T
z_lig, z_pocket = self.sample_combined_position_feature_noise(
ligand['mask'], pocket['mask'])
# Output tensors
out_lig = torch.zeros((return_frames,) + z_lig.size(),
device=z_lig.device)
out_pocket = torch.zeros((return_frames,) + z_pocket.size(),
device=z_pocket.device)
# Iteratively sample according to a pre-defined schedule
schedule = self.get_repaint_schedule(resamplings, jump_length, timesteps)
s = timesteps - 1
for i, n_denoise_steps in enumerate(schedule):
for j in range(n_denoise_steps):
# Denoise one time step: t -> s
s_array = torch.full((n_samples, 1), fill_value=s,
device=z_lig.device)
t_array = s_array + 1
s_array = s_array / timesteps
t_array = t_array / timesteps
# sample known nodes from the input
gamma_s = self.inflate_batch_array(self.gamma(s_array),
ligand['x'])
z_lig_known, z_pocket_known, _, _ = self.noised_representation(
xh0_lig, xh0_pocket, ligand['mask'], pocket['mask'], gamma_s)
# sample inpainted part
z_lig_unknown, z_pocket_unknown = self.sample_p_zs_given_zt(
s_array, t_array, z_lig, z_pocket, ligand['mask'],
pocket['mask'])
# move center of mass of the noised part to the center of mass
# of the corresponding denoised part before combining them
# -> the resulting system should be COM-free
com_noised = scatter_mean(
torch.cat((z_lig_known[:, :self.n_dims][lig_fixed.bool().view(-1)],
z_pocket_known[:, :self.n_dims][pocket_fixed.bool().view(-1)])),
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)],
pocket['mask'][pocket_fixed.bool().view(-1)])),
dim=0
)
com_denoised = scatter_mean(
torch.cat((z_lig_unknown[:, :self.n_dims][lig_fixed.bool().view(-1)],
z_pocket_unknown[:, :self.n_dims][pocket_fixed.bool().view(-1)])),
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)],
pocket['mask'][pocket_fixed.bool().view(-1)])),
dim=0
)
z_lig_known[:, :self.n_dims] = \
z_lig_known[:, :self.n_dims] + (com_denoised - com_noised)[ligand['mask']]
z_pocket_known[:, :self.n_dims] = \
z_pocket_known[:, :self.n_dims] + (com_denoised - com_noised)[pocket['mask']]
# combine
z_lig = z_lig_known * lig_fixed + \
z_lig_unknown * (1 - lig_fixed)
z_pocket = z_pocket_known * pocket_fixed + \
z_pocket_unknown * (1 - pocket_fixed)
self.assert_mean_zero_with_mask(
torch.cat((z_lig[:, :self.n_dims],
z_pocket[:, :self.n_dims]), dim=0), combined_mask
)
# save frame at the end of a resample cycle
if n_denoise_steps > jump_length or i == len(schedule) - 1:
if (s * return_frames) % timesteps == 0:
idx = (s * return_frames) // timesteps
out_lig[idx], out_pocket[idx] = \
self.unnormalize_z(z_lig, z_pocket)
# Noise combined representation
if j == n_denoise_steps - 1 and i < len(schedule) - 1:
# Go back jump_length steps
t = s + jump_length
t_array = torch.full((n_samples, 1), fill_value=t,
device=z_lig.device)
t_array = t_array / timesteps
gamma_s = self.inflate_batch_array(self.gamma(s_array),
ligand['x'])
gamma_t = self.inflate_batch_array(self.gamma(t_array),
ligand['x'])
z_lig, z_pocket = self.sample_p_zt_given_zs(
z_lig, z_pocket, ligand['mask'], pocket['mask'],
gamma_t, gamma_s)
s = t
s -= 1
# Finally sample p(x, h | z_0).
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0(
z_lig, z_pocket, ligand['mask'], pocket['mask'], n_samples)
self.assert_mean_zero_with_mask(
torch.cat((x_lig, x_pocket), dim=0), combined_mask
)
# Correct CoM drift for examples without intermediate states
if return_frames == 1:
x = torch.cat((x_lig, x_pocket))
max_cog = scatter_add(x, combined_mask, dim=0).abs().max().item()
if max_cog > 5e-2:
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting '
f'the positions down.')
x = self.remove_mean_batch(x, combined_mask)
x_lig, x_pocket = x[:len(x_lig)], x[len(x_lig):]
# Overwrite last frame with the resulting x and h.
out_lig[0] = torch.cat([x_lig, h_lig], dim=1)
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1)
# remove frame dimension if only the final molecule is returned
return out_lig.squeeze(0), out_pocket.squeeze(0), ligand['mask'], \
pocket['mask']
@staticmethod
def gaussian_KL(q_mu_minus_p_mu_squared, q_sigma, p_sigma, d):
"""Computes the KL distance between two normal distributions.
Args:
q_mu_minus_p_mu_squared: Squared difference between mean of
distribution q and distribution p: ||mu_q - mu_p||^2
q_sigma: Standard deviation of distribution q.
p_sigma: Standard deviation of distribution p.
d: dimension
Returns:
The KL distance
"""
return d * torch.log(p_sigma / q_sigma) + \
0.5 * (d * q_sigma ** 2 + q_mu_minus_p_mu_squared) / \
(p_sigma ** 2) - 0.5 * d
@staticmethod
def inflate_batch_array(array, target):
"""
Inflates the batch array (array) with only a single axis
(i.e. shape = (batch_size,), or possibly more empty axes
(i.e. shape (batch_size, 1, ..., 1)) to match the target shape.
"""
target_shape = (array.size(0),) + (1,) * (len(target.size()) - 1)
return array.view(target_shape)
def sigma(self, gamma, target_tensor):
"""Computes sigma given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(gamma)),
target_tensor)
def alpha(self, gamma, target_tensor):
"""Computes alpha given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(-gamma)),
target_tensor)
@staticmethod
def SNR(gamma):
"""Computes signal to noise ratio (alpha^2/sigma^2) given gamma."""
return torch.exp(-gamma)
def normalize(self, ligand=None, pocket=None):
if ligand is not None:
ligand['x'] = ligand['x'] / self.norm_values[0]
# Casting to float in case h still has long or int type.
ligand['one_hot'] = \
(ligand['one_hot'].float() - self.norm_biases[1]) / \
self.norm_values[1]
if pocket is not None:
pocket['x'] = pocket['x'] / self.norm_values[0]
pocket['one_hot'] = \
(pocket['one_hot'].float() - self.norm_biases[1]) / \
self.norm_values[1]
return ligand, pocket
def unnormalize(self, x, h_cat):
x = x * self.norm_values[0]
h_cat = h_cat * self.norm_values[1] + self.norm_biases[1]
return x, h_cat
def unnormalize_z(self, z_lig, z_pocket):
# Parse from z
x_lig, h_lig = z_lig[:, :self.n_dims], z_lig[:, self.n_dims:]
x_pocket, h_pocket = z_pocket[:, :self.n_dims], z_pocket[:, self.n_dims:]
# Unnormalize
x_lig, h_lig = self.unnormalize(x_lig, h_lig)
x_pocket, h_pocket = self.unnormalize(x_pocket, h_pocket)
return torch.cat([x_lig, h_lig], dim=1), \
torch.cat([x_pocket, h_pocket], dim=1)
def subspace_dimensionality(self, input_size):
"""Compute the dimensionality on translation-invariant linear subspace
where distributions on x are defined."""
return (input_size - 1) * self.n_dims
@staticmethod
def remove_mean_batch(x, indices):
mean = scatter_mean(x, indices, dim=0)
x = x - mean[indices]
return x
@staticmethod
def assert_mean_zero_with_mask(x, node_mask, eps=1e-10):
largest_value = x.abs().max().item()
error = scatter_add(x, node_mask, dim=0).abs().max().item()
rel_error = error / (largest_value + eps)
assert rel_error < 1e-2, f'Mean is not zero, relative_error {rel_error}'
@staticmethod
def sample_center_gravity_zero_gaussian_batch(size, lig_indices,
pocket_indices):
assert len(size) == 2
x = torch.randn(size, device=lig_indices.device)
# This projection only works because Gaussian is rotation invariant
# around zero and samples are independent!
x_projected = EnVariationalDiffusion.remove_mean_batch(
x, torch.cat((lig_indices, pocket_indices)))
return x_projected
@staticmethod
def sum_except_batch(x, indices):
return scatter_add(x.sum(-1), indices, dim=0)
@staticmethod
def cdf_standard_gaussian(x):
return 0.5 * (1. + torch.erf(x / math.sqrt(2)))
@staticmethod
def sample_gaussian(size, device):
x = torch.randn(size, device=device)
return x
class DistributionNodes:
def __init__(self, histogram):
histogram = torch.tensor(histogram).float()
histogram = histogram + 1e-3 # for numerical stability
prob = histogram / histogram.sum()
self.idx_to_n_nodes = torch.tensor(
[[(i, j) for j in range(prob.shape[1])] for i in range(prob.shape[0])]
).view(-1, 2)
self.n_nodes_to_idx = {tuple(x.tolist()): i
for i, x in enumerate(self.idx_to_n_nodes)}
self.prob = prob
self.m = torch.distributions.Categorical(self.prob.view(-1),
validate_args=True)
self.n1_given_n2 = \
[torch.distributions.Categorical(prob[:, j], validate_args=True)
for j in range(prob.shape[1])]
self.n2_given_n1 = \
[torch.distributions.Categorical(prob[i, :], validate_args=True)
for i in range(prob.shape[0])]
# entropy = -torch.sum(self.prob.view(-1) * torch.log(self.prob.view(-1) + 1e-30))
entropy = self.m.entropy()
print("Entropy of n_nodes: H[N]", entropy.item())
def sample(self, n_samples=1):
idx = self.m.sample((n_samples,))
num_nodes_lig, num_nodes_pocket = self.idx_to_n_nodes[idx].T
return num_nodes_lig, num_nodes_pocket
def sample_conditional(self, n1=None, n2=None):
assert (n1 is None) ^ (n2 is None), \
"Exactly one input argument must be None"
m = self.n1_given_n2 if n2 is not None else self.n2_given_n1
c = n2 if n2 is not None else n1
return torch.tensor([m[i].sample() for i in c], device=c.device)
def log_prob(self, batch_n_nodes_1, batch_n_nodes_2):
assert len(batch_n_nodes_1.size()) == 1
assert len(batch_n_nodes_2.size()) == 1
idx = torch.tensor(
[self.n_nodes_to_idx[(n1, n2)]
for n1, n2 in zip(batch_n_nodes_1.tolist(), batch_n_nodes_2.tolist())]
)
# log_probs = torch.log(self.prob.view(-1)[idx] + 1e-30)
log_probs = self.m.log_prob(idx)
return log_probs.to(batch_n_nodes_1.device)
def log_prob_n1_given_n2(self, n1, n2):
assert len(n1.size()) == 1
assert len(n2.size()) == 1
log_probs = torch.stack([self.n1_given_n2[c].log_prob(i.cpu())
for i, c in zip(n1, n2)])
return log_probs.to(n1.device)
def log_prob_n2_given_n1(self, n2, n1):
assert len(n2.size()) == 1
assert len(n1.size()) == 1
log_probs = torch.stack([self.n2_given_n1[c].log_prob(i.cpu())
for i, c in zip(n2, n1)])
return log_probs.to(n2.device)
class PositiveLinear(torch.nn.Module):
"""Linear layer with weights forced to be positive."""
def __init__(self, in_features: int, out_features: int, bias: bool = True,
weight_init_offset: int = -2):
super(PositiveLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = torch.nn.Parameter(
torch.empty((out_features, in_features)))
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features))
else:
self.register_parameter('bias', None)
self.weight_init_offset = weight_init_offset
self.reset_parameters()
def reset_parameters(self) -> None:
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
with torch.no_grad():
self.weight.add_(self.weight_init_offset)
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input):
positive_weight = F.softplus(self.weight)
return F.linear(input, positive_weight, self.bias)
class GammaNetwork(torch.nn.Module):
"""The gamma network models a monotonic increasing function.
Construction as in the VDM paper."""
def __init__(self):
super().__init__()
self.l1 = PositiveLinear(1, 1)
self.l2 = PositiveLinear(1, 1024)
self.l3 = PositiveLinear(1024, 1)
self.gamma_0 = torch.nn.Parameter(torch.tensor([-5.]))
self.gamma_1 = torch.nn.Parameter(torch.tensor([10.]))
self.show_schedule()
def show_schedule(self, num_steps=50):
t = torch.linspace(0, 1, num_steps).view(num_steps, 1)
gamma = self.forward(t)
print('Gamma schedule:')
print(gamma.detach().cpu().numpy().reshape(num_steps))
def gamma_tilde(self, t):
l1_t = self.l1(t)
return l1_t + self.l3(torch.sigmoid(self.l2(l1_t)))
def forward(self, t):
zeros, ones = torch.zeros_like(t), torch.ones_like(t)
# Not super efficient.
gamma_tilde_0 = self.gamma_tilde(zeros)
gamma_tilde_1 = self.gamma_tilde(ones)
gamma_tilde_t = self.gamma_tilde(t)
# Normalize to [0, 1]
normalized_gamma = (gamma_tilde_t - gamma_tilde_0) / (
gamma_tilde_1 - gamma_tilde_0)
# Rescale to [gamma_0, gamma_1]
gamma = self.gamma_0 + (self.gamma_1 - self.gamma_0) * normalized_gamma
return gamma
def cosine_beta_schedule(timesteps, s=0.008, raise_to_power: float = 1):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 2
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
betas = np.clip(betas, a_min=0, a_max=0.999)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
if raise_to_power != 1:
alphas_cumprod = np.power(alphas_cumprod, raise_to_power)
return alphas_cumprod
def clip_noise_schedule(alphas2, clip_value=0.001):
"""
For a noise schedule given by alpha^2, this clips alpha_t / alpha_t-1.
This may help improve stability during
sampling.
"""
alphas2 = np.concatenate([np.ones(1), alphas2], axis=0)
alphas_step = (alphas2[1:] / alphas2[:-1])
alphas_step = np.clip(alphas_step, a_min=clip_value, a_max=1.)
alphas2 = np.cumprod(alphas_step, axis=0)
return alphas2
def polynomial_schedule(timesteps: int, s=1e-4, power=3.):
"""
A noise schedule based on a simple polynomial equation: 1 - x^power.
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas2 = (1 - np.power(x / steps, power))**2
alphas2 = clip_noise_schedule(alphas2, clip_value=0.001)
precision = 1 - 2 * s
alphas2 = precision * alphas2 + s
return alphas2
class PredefinedNoiseSchedule(torch.nn.Module):
"""
Predefined noise schedule. Essentially creates a lookup array for predefined
(non-learned) noise schedules.
"""
def __init__(self, noise_schedule, timesteps, precision):
super(PredefinedNoiseSchedule, self).__init__()
self.timesteps = timesteps
if noise_schedule == 'cosine':
alphas2 = cosine_beta_schedule(timesteps)
elif 'polynomial' in noise_schedule:
splits = noise_schedule.split('_')
assert len(splits) == 2
power = float(splits[1])
alphas2 = polynomial_schedule(timesteps, s=precision, power=power)
else:
raise ValueError(noise_schedule)
sigmas2 = 1 - alphas2
log_alphas2 = np.log(alphas2)
log_sigmas2 = np.log(sigmas2)
log_alphas2_to_sigmas2 = log_alphas2 - log_sigmas2
self.gamma = torch.nn.Parameter(
torch.from_numpy(-log_alphas2_to_sigmas2).float(),
requires_grad=False)
def forward(self, t):
t_int = torch.round(t * self.timesteps).long()
return self.gamma[t_int]
|