File size: 38,178 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 |
import math
from argparse import Namespace
from typing import Optional
from time import time
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import wandb
from torch_scatter import scatter_add, scatter_mean
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one
from constants import dataset_params, FLOAT_TYPE, INT_TYPE
from equivariant_diffusion.dynamics import EGNNDynamics
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
from equivariant_diffusion.conditional_model import ConditionalDDPM, \
SimpleConditionalDDPM
from dataset import ProcessedLigandPocketDataset
import utils
from analysis.visualization import save_xyz_file, visualize, visualize_chain
from analysis.metrics import BasicMolecularMetrics, CategoricalDistribution, \
MoleculeProperties
from analysis.molecule_builder import build_molecule, process_molecule
from analysis.docking import smina_score
class LigandPocketDDPM(pl.LightningModule):
def __init__(
self,
outdir,
dataset,
datadir,
batch_size,
lr,
egnn_params: Namespace,
diffusion_params,
num_workers,
augment_noise,
augment_rotation,
clip_grad,
eval_epochs,
eval_params,
visualize_sample_epoch,
visualize_chain_epoch,
auxiliary_loss,
loss_params,
mode,
node_histogram,
pocket_representation='CA',
virtual_nodes=False
):
super(LigandPocketDDPM, self).__init__()
self.save_hyperparameters()
ddpm_models = {'joint': EnVariationalDiffusion,
'pocket_conditioning': ConditionalDDPM,
'pocket_conditioning_simple': SimpleConditionalDDPM}
assert mode in ddpm_models
self.mode = mode
assert pocket_representation in {'CA', 'full-atom'}
self.pocket_representation = pocket_representation
self.dataset_name = dataset
self.datadir = datadir
self.outdir = outdir
self.batch_size = batch_size
self.eval_batch_size = eval_params.eval_batch_size \
if 'eval_batch_size' in eval_params else batch_size
self.lr = lr
self.loss_type = diffusion_params.diffusion_loss_type
self.eval_epochs = eval_epochs
self.visualize_sample_epoch = visualize_sample_epoch
self.visualize_chain_epoch = visualize_chain_epoch
self.eval_params = eval_params
self.num_workers = num_workers
self.augment_noise = augment_noise
self.augment_rotation = augment_rotation
self.dataset_info = dataset_params[dataset]
self.T = diffusion_params.diffusion_steps
self.clip_grad = clip_grad
if clip_grad:
self.gradnorm_queue = utils.Queue()
# Add large value that will be flushed.
self.gradnorm_queue.add(3000)
self.lig_type_encoder = self.dataset_info['atom_encoder']
self.lig_type_decoder = self.dataset_info['atom_decoder']
self.pocket_type_encoder = self.dataset_info['aa_encoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_encoder']
self.pocket_type_decoder = self.dataset_info['aa_decoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_decoder']
smiles_list = None if eval_params.smiles_file is None \
else np.load(eval_params.smiles_file)
self.ligand_metrics = BasicMolecularMetrics(self.dataset_info,
smiles_list)
self.molecule_properties = MoleculeProperties()
self.ligand_type_distribution = CategoricalDistribution(
self.dataset_info['atom_hist'], self.lig_type_encoder)
if self.pocket_representation == 'CA':
self.pocket_type_distribution = CategoricalDistribution(
self.dataset_info['aa_hist'], self.pocket_type_encoder)
else:
self.pocket_type_distribution = None
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.virtual_nodes = virtual_nodes
self.data_transform = None
self.max_num_nodes = len(node_histogram) - 1
if virtual_nodes:
# symbol = 'virtual'
symbol = 'Ne' # visualize as Neon atoms
self.lig_type_encoder[symbol] = len(self.lig_type_encoder)
self.virtual_atom = self.lig_type_encoder[symbol]
self.lig_type_decoder.append(symbol)
self.data_transform = utils.AppendVirtualNodes(
self.max_num_nodes, self.lig_type_encoder, symbol)
# Update dataset_info dictionary. This is necessary for using the
# visualization functions.
self.dataset_info['atom_encoder'] = self.lig_type_encoder
self.dataset_info['atom_decoder'] = self.lig_type_decoder
self.atom_nf = len(self.lig_type_decoder)
self.aa_nf = len(self.pocket_type_decoder)
self.x_dims = 3
net_dynamics = EGNNDynamics(
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
joint_nf=egnn_params.joint_nf,
device=egnn_params.device if torch.cuda.is_available() else 'cpu',
hidden_nf=egnn_params.hidden_nf,
act_fn=torch.nn.SiLU(),
n_layers=egnn_params.n_layers,
attention=egnn_params.attention,
tanh=egnn_params.tanh,
norm_constant=egnn_params.norm_constant,
inv_sublayers=egnn_params.inv_sublayers,
sin_embedding=egnn_params.sin_embedding,
normalization_factor=egnn_params.normalization_factor,
aggregation_method=egnn_params.aggregation_method,
edge_cutoff_ligand=egnn_params.__dict__.get('edge_cutoff_ligand'),
edge_cutoff_pocket=egnn_params.__dict__.get('edge_cutoff_pocket'),
edge_cutoff_interaction=egnn_params.__dict__.get('edge_cutoff_interaction'),
update_pocket_coords=(self.mode == 'joint'),
reflection_equivariant=egnn_params.reflection_equivariant,
edge_embedding_dim=egnn_params.__dict__.get('edge_embedding_dim'),
)
self.ddpm = ddpm_models[self.mode](
dynamics=net_dynamics,
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
timesteps=diffusion_params.diffusion_steps,
noise_schedule=diffusion_params.diffusion_noise_schedule,
noise_precision=diffusion_params.diffusion_noise_precision,
loss_type=diffusion_params.diffusion_loss_type,
norm_values=diffusion_params.normalize_factors,
size_histogram=node_histogram,
virtual_node_idx=self.lig_type_encoder[symbol] if virtual_nodes else None
)
self.auxiliary_loss = auxiliary_loss
self.lj_rm = self.dataset_info['lennard_jones_rm']
if self.auxiliary_loss:
self.clamp_lj = loss_params.clamp_lj
self.auxiliary_weight_schedule = WeightSchedule(
T=diffusion_params.diffusion_steps,
max_weight=loss_params.max_weight, mode=loss_params.schedule)
def configure_optimizers(self):
return torch.optim.AdamW(self.ddpm.parameters(), lr=self.lr,
amsgrad=True, weight_decay=1e-12)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'train.npz'), transform=self.data_transform)
self.val_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'val.npz'), transform=self.data_transform)
elif stage == 'test':
self.test_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'test.npz'), transform=self.data_transform)
else:
raise NotImplementedError
def train_dataloader(self):
return DataLoader(self.train_dataset, self.batch_size, shuffle=True,
num_workers=self.num_workers,
collate_fn=self.train_dataset.collate_fn,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.val_dataset.collate_fn,
pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.test_dataset.collate_fn,
pin_memory=True)
def get_ligand_and_pocket(self, data):
ligand = {
'x': data['lig_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['lig_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_lig_atoms'].to(self.device, INT_TYPE),
'mask': data['lig_mask'].to(self.device, INT_TYPE),
}
if self.virtual_nodes:
ligand['num_virtual_atoms'] = data['num_virtual_atoms'].to(
self.device, INT_TYPE)
pocket = {
'x': data['pocket_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['pocket_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_pocket_nodes'].to(self.device, INT_TYPE),
'mask': data['pocket_mask'].to(self.device, INT_TYPE)
}
return ligand, pocket
def forward(self, data):
ligand, pocket = self.get_ligand_and_pocket(data)
# Note: \mathcal{L} terms in the paper represent log-likelihoods while
# our loss terms are a negative(!) log-likelihoods
delta_log_px, error_t_lig, error_t_pocket, SNR_weight, \
loss_0_x_ligand, loss_0_x_pocket, loss_0_h, neg_log_const_0, \
kl_prior, log_pN, t_int, xh_lig_hat, info = \
self.ddpm(ligand, pocket, return_info=True)
if self.loss_type == 'l2' and self.training:
actual_ligand_size = ligand['size'] - ligand['num_virtual_atoms'] if self.virtual_nodes else ligand['size']
# normalize loss_t
denom_lig = self.x_dims * actual_ligand_size + \
self.ddpm.atom_nf * ligand['size']
error_t_lig = error_t_lig / denom_lig
denom_pocket = (self.x_dims + self.ddpm.residue_nf) * pocket['size']
error_t_pocket = error_t_pocket / denom_pocket
loss_t = 0.5 * (error_t_lig + error_t_pocket)
# normalize loss_0
loss_0_x_ligand = loss_0_x_ligand / (self.x_dims * actual_ligand_size)
loss_0_x_pocket = loss_0_x_pocket / (self.x_dims * pocket['size'])
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
# VLB objective or evaluation step
else:
# Note: SNR_weight should be negative
loss_t = -self.T * 0.5 * SNR_weight * (error_t_lig + error_t_pocket)
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
loss_0 = loss_0 + neg_log_const_0
nll = loss_t + loss_0 + kl_prior
# Correct for normalization on x.
if not (self.loss_type == 'l2' and self.training):
nll = nll - delta_log_px
# always the same number of nodes if virtual nodes are added
if not self.virtual_nodes:
# Transform conditional nll into joint nll
# Note:
# loss = -log p(x,h|N) and log p(x,h,N) = log p(x,h|N) + log p(N)
# Therefore, log p(x,h|N) = -loss + log p(N)
# => loss_new = -log p(x,h,N) = loss - log p(N)
nll = nll - log_pN
# Add auxiliary loss term
if self.auxiliary_loss and self.loss_type == 'l2' and self.training:
x_lig_hat = xh_lig_hat[:, :self.x_dims]
h_lig_hat = xh_lig_hat[:, self.x_dims:]
weighted_lj_potential = \
self.auxiliary_weight_schedule(t_int.long()) * \
self.lj_potential(x_lig_hat, h_lig_hat, ligand['mask'])
nll = nll + weighted_lj_potential
info['weighted_lj'] = weighted_lj_potential.mean(0)
info['error_t_lig'] = error_t_lig.mean(0)
info['error_t_pocket'] = error_t_pocket.mean(0)
info['SNR_weight'] = SNR_weight.mean(0)
info['loss_0'] = loss_0.mean(0)
info['kl_prior'] = kl_prior.mean(0)
info['delta_log_px'] = delta_log_px.mean(0)
info['neg_log_const_0'] = neg_log_const_0.mean(0)
info['log_pN'] = log_pN.mean(0)
return nll, info
def lj_potential(self, atom_x, atom_one_hot, batch_mask):
adj = batch_mask[:, None] == batch_mask[None, :]
adj = adj ^ torch.diag(torch.diag(adj)) # remove self-edges
edges = torch.where(adj)
# Compute pair-wise potentials
r = torch.sum((atom_x[edges[0]] - atom_x[edges[1]])**2, dim=1).sqrt()
# Get optimal radii
lennard_jones_radii = torch.tensor(self.lj_rm, device=r.device)
# unit conversion pm -> A
lennard_jones_radii = lennard_jones_radii / 100.0
# normalization
lennard_jones_radii = lennard_jones_radii / self.ddpm.norm_values[0]
atom_type_idx = atom_one_hot.argmax(1)
rm = lennard_jones_radii[atom_type_idx[edges[0]],
atom_type_idx[edges[1]]]
sigma = 2 ** (-1 / 6) * rm
out = 4 * ((sigma / r) ** 12 - (sigma / r) ** 6)
if self.clamp_lj is not None:
out = torch.clamp(out, min=None, max=self.clamp_lj)
# Compute potential per atom
out = scatter_add(out, edges[0], dim=0, dim_size=len(atom_x))
# Sum potentials of all atoms
return scatter_add(out, batch_mask, dim=0)
def log_metrics(self, metrics_dict, split, batch_size=None, **kwargs):
for m, value in metrics_dict.items():
self.log(f'{m}/{split}', value, batch_size=batch_size, **kwargs)
def training_step(self, data, *args):
if self.augment_noise > 0:
raise NotImplementedError
# Add noise eps ~ N(0, augment_noise) around points.
eps = sample_center_gravity_zero_gaussian(x.size(), x.device)
x = x + eps * args.augment_noise
if self.augment_rotation:
raise NotImplementedError
x = utils.random_rotation(x).detach()
try:
nll, info = self.forward(data)
except RuntimeError as e:
# this is not supported for multi-GPU
if self.trainer.num_devices < 2 and 'out of memory' in str(e):
print('WARNING: ran out of memory, skipping to the next batch')
return None
else:
raise e
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, 'train', batch_size=len(data['num_lig_atoms']))
return info
def _shared_eval(self, data, prefix, *args):
nll, info = self.forward(data)
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, prefix, batch_size=len(data['num_lig_atoms']),
sync_dist=True)
return info
def validation_step(self, data, *args):
self._shared_eval(data, 'val', *args)
def test_step(self, data, *args):
self._shared_eval(data, 'test', *args)
def validation_epoch_end(self, validation_step_outputs):
# Perform validation on single GPU
if not self.trainer.is_global_zero:
return
suffix = '' if self.mode == 'joint' else '_given_pocket'
if (self.current_epoch + 1) % self.eval_epochs == 0:
tic = time()
sampling_results = getattr(self, 'sample_and_analyze' + suffix)(
self.eval_params.n_eval_samples, self.val_dataset,
batch_size=self.eval_batch_size)
self.log_metrics(sampling_results, 'val')
print(f'Evaluation took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_sample_epoch == 0:
tic = time()
getattr(self, 'sample_and_save' + suffix)(
self.eval_params.n_visualize_samples)
print(f'Sample visualization took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_chain_epoch == 0:
tic = time()
getattr(self, 'sample_chain_and_save' + suffix)(
self.eval_params.keep_frames)
print(f'Chain visualization took {time() - tic:.2f} seconds')
@torch.no_grad()
def sample_and_analyze(self, n_samples, dataset=None, batch_size=None):
print(f'Analyzing sampled molecules at epoch {self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples_batch)
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample(
n_samples_batch, num_nodes_lig, num_nodes_pocket,
device=self.device)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types)
def analyze_sample(self, molecules, atom_types, aa_types, receptors=None):
# Distribution of node types
kl_div_atom = self.ligand_type_distribution.kl_divergence(atom_types) \
if self.ligand_type_distribution is not None else -1
kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
if self.pocket_type_distribution is not None else -1
# Convert into rdmols
rdmols = [build_molecule(*graph, self.dataset_info) for graph in molecules]
# Other basic metrics
(validity, connectivity, uniqueness, novelty), (_, connected_mols) = \
self.ligand_metrics.evaluate_rdmols(rdmols)
qed, sa, logp, lipinski, diversity = \
self.molecule_properties.evaluate_mean(connected_mols)
out = {
'kl_div_atom_types': kl_div_atom,
'kl_div_residue_types': kl_div_aa,
'Validity': validity,
'Connectivity': connectivity,
'Uniqueness': uniqueness,
'Novelty': novelty,
'QED': qed,
'SA': sa,
'LogP': logp,
'Lipinski': lipinski,
'Diversity': diversity
}
# Simple docking score
if receptors is not None:
# out['smina_score'] = np.mean(smina_score(rdmols, receptors))
out['smina_score'] = np.mean(smina_score(connected_mols, receptors))
return out
def get_full_path(self, receptor_name):
pdb, suffix = receptor_name.split('.')
receptor_name = f'{pdb.upper()}-{suffix}.pdb'
return Path(self.datadir, 'val', receptor_name)
@torch.no_grad()
def sample_and_analyze_given_pocket(self, n_samples, dataset=None,
batch_size=None):
print(f'Analyzing sampled molecules given pockets at epoch '
f'{self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
receptors = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
# Create a batch
batch = dataset.collate_fn(
[dataset[(i * batch_size + j) % len(dataset)]
for j in range(n_samples_batch)]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
receptors.extend([self.get_full_path(x) for x in batch['receptors']])
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
if self.virtual_nodes:
# Remove virtual nodes for analysis
vnode_mask = (atom_type == self.virtual_atom)
x = x[~vnode_mask, :]
atom_type = atom_type[~vnode_mask]
lig_mask = lig_mask[~vnode_mask]
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types,
receptors=receptors)
def sample_and_save(self, n_samples):
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample(n_samples, num_nodes_lig, num_nodes_pocket,
device=self.device)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_and_save_given_pocket(self, n_samples):
batch = self.val_dataset.collate_fn(
[self.val_dataset[i] for i in torch.randint(len(self.val_dataset),
size=(n_samples,))]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_chain_and_save(self, keep_frames):
n_samples = 1
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
chain_lig, chain_pocket, _, _ = self.ddpm.sample(
n_samples, num_nodes_lig, num_nodes_pocket,
return_frames=keep_frames, device=self.device)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :self.x_dims]
one_hot_pocket = chain_pocket[:, :, self.x_dims:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def sample_chain_and_save_given_pocket(self, keep_frames):
n_samples = 1
batch = self.val_dataset.collate_fn([
self.val_dataset[torch.randint(len(self.val_dataset), size=(1,))]
])
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
chain_lig, chain_pocket, _, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig, return_frames=keep_frames)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :3]
one_hot_pocket = chain_pocket[:, :, 3:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def prepare_pocket(self, biopython_residues, repeats=1):
if self.pocket_representation == 'CA':
pocket_coord = torch.tensor(np.array(
[res['CA'].get_coord() for res in biopython_residues]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[three_to_one(res.get_resname())]
for res in biopython_residues], device=self.device)
else:
pocket_atoms = [a for res in biopython_residues
for a in res.get_atoms()
if (a.element.capitalize() in self.pocket_type_encoder or a.element != 'H')]
pocket_coord = torch.tensor(np.array(
[a.get_coord() for a in pocket_atoms]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[a.element.capitalize()]
for a in pocket_atoms], device=self.device)
pocket_one_hot = F.one_hot(
pocket_types, num_classes=len(self.pocket_type_encoder)
)
pocket_size = torch.tensor([len(pocket_coord)] * repeats,
device=self.device, dtype=INT_TYPE)
pocket_mask = torch.repeat_interleave(
torch.arange(repeats, device=self.device, dtype=INT_TYPE),
len(pocket_coord)
)
pocket = {
'x': pocket_coord.repeat(repeats, 1),
'one_hot': pocket_one_hot.repeat(repeats, 1),
'size': pocket_size,
'mask': pocket_mask
}
return pocket
def generate_ligands(self, pdb_file, n_samples, pocket_ids=None,
ref_ligand=None, num_nodes_lig=None, sanitize=False,
largest_frag=False, relax_iter=0, timesteps=None,
n_nodes_bias=0, n_nodes_min=0, **kwargs):
"""
Generate ligands given a pocket
Args:
pdb_file: PDB filename
n_samples: number of samples
pocket_ids: list of pocket residues in <chain>:<resi> format
ref_ligand: alternative way of defining the pocket based on a
reference ligand given in <chain>:<resi> format if the ligand is
contained in the PDB file, or path to an SDF file that
contains the ligand
num_nodes_lig: number of ligand nodes for each sample (list of
integers), sampled randomly if 'None'
sanitize: whether to sanitize molecules or not
largest_frag: only return the largest fragment
relax_iter: number of force field optimization steps
timesteps: number of denoising steps, use training value if None
n_nodes_bias: added to the sampled (or provided) number of nodes
n_nodes_min: lower bound on the number of sampled nodes
kwargs: additional inpainting parameters
Returns:
list of molecules
"""
assert (pocket_ids is None) ^ (ref_ligand is None)
self.ddpm.eval()
# Load PDB
pdb_struct = PDBParser(QUIET=True).get_structure('', pdb_file)[0]
if pocket_ids is not None:
# define pocket with list of residues
residues = [
pdb_struct[x.split(':')[0]][(' ', int(x.split(':')[1]), ' ')]
for x in pocket_ids]
else:
# define pocket with reference ligand
residues = utils.get_pocket_from_ligand(pdb_struct, ref_ligand)
pocket = self.prepare_pocket(residues, repeats=n_samples)
# Pocket's center of mass
pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
# Create dummy ligands
if num_nodes_lig is None:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
# Add bias
num_nodes_lig = num_nodes_lig + n_nodes_bias
# Apply minimum ligand size
num_nodes_lig = torch.clamp(num_nodes_lig, min=n_nodes_min)
# Use inpainting
if type(self.ddpm) == EnVariationalDiffusion:
lig_mask = utils.num_nodes_to_batch_mask(
len(num_nodes_lig), num_nodes_lig, self.device)
ligand = {
'x': torch.zeros((len(lig_mask), self.x_dims),
device=self.device, dtype=FLOAT_TYPE),
'one_hot': torch.zeros((len(lig_mask), self.atom_nf),
device=self.device, dtype=FLOAT_TYPE),
'size': num_nodes_lig,
'mask': lig_mask
}
# Fix all pocket nodes but sample
lig_mask_fixed = torch.zeros(len(lig_mask), device=self.device)
pocket_mask_fixed = torch.ones(len(pocket['mask']),
device=self.device)
xh_lig, xh_pocket, lig_mask, pocket_mask = self.ddpm.inpaint(
ligand, pocket, lig_mask_fixed, pocket_mask_fixed,
timesteps=timesteps, **kwargs)
# Use conditional generation
elif type(self.ddpm) == ConditionalDDPM:
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig,
timesteps=timesteps)
else:
raise NotImplementedError
# Move generated molecule back to the original pocket position
pocket_com_after = scatter_mean(
xh_pocket[:, :self.x_dims], pocket_mask, dim=0)
xh_pocket[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[pocket_mask]
xh_lig[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[lig_mask]
# Build mol objects
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules = []
for mol_pc in zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask)):
mol = build_molecule(*mol_pc, self.dataset_info, add_coords=True)
mol = process_molecule(mol,
add_hydrogens=False,
sanitize=sanitize,
relax_iter=relax_iter,
largest_frag=largest_frag)
if mol is not None:
molecules.append(mol)
return molecules
def configure_gradient_clipping(self, optimizer, optimizer_idx,
gradient_clip_val, gradient_clip_algorithm):
if not self.clip_grad:
return
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * self.gradnorm_queue.mean() + \
2 * self.gradnorm_queue.std()
# Get current grad_norm
params = [p for g in optimizer.param_groups for p in g['params']]
grad_norm = utils.get_grad_norm(params)
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=max_grad_norm,
gradient_clip_algorithm='norm')
if float(grad_norm) > max_grad_norm:
self.gradnorm_queue.add(float(max_grad_norm))
else:
self.gradnorm_queue.add(float(grad_norm))
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
class WeightSchedule:
def __init__(self, T, max_weight, mode='linear'):
if mode == 'linear':
self.weights = torch.linspace(max_weight, 0, T + 1)
elif mode == 'constant':
self.weights = max_weight * torch.ones(T + 1)
else:
raise NotImplementedError(f'{mode} weight schedule is not '
f'available.')
def __call__(self, t_array):
""" all values in t_array are assumed to be integers in [0, T] """
return self.weights[t_array].to(t_array.device)
|