File size: 9,554 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import argparse
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from Bio.PDB import PDBParser
from rdkit import Chem
import pandas as pd
import random
from torch_scatter import scatter_mean
from openbabel import openbabel
openbabel.obErrorLog.StopLogging() # suppress OpenBabel messages
import utils
from lightning_modules import LigandPocketDDPM
from constants import FLOAT_TYPE, INT_TYPE
from analysis.molecule_builder import build_molecule, process_molecule
from analysis.metrics import MoleculeProperties
def prepare_from_sdf_files(sdf_files, atom_encoder):
ligand_coords = []
atom_one_hot = []
for file in sdf_files:
rdmol = Chem.SDMolSupplier(str(file), sanitize=False)[0]
ligand_coords.append(
torch.from_numpy(rdmol.GetConformer().GetPositions()).float()
)
types = torch.tensor([atom_encoder[a.GetSymbol()] for a in rdmol.GetAtoms()])
atom_one_hot.append(
F.one_hot(types, num_classes=len(atom_encoder))
)
return torch.cat(ligand_coords, dim=0), torch.cat(atom_one_hot, dim=0)
def prepare_ligands_from_mols(mols, atom_encoder, device='cpu'):
ligand_coords = []
atom_one_hots = []
masks = []
sizes = []
for i, mol in enumerate(mols):
coord = torch.tensor(mol.GetConformer().GetPositions(), dtype=FLOAT_TYPE)
types = torch.tensor([atom_encoder[a.GetSymbol()] for a in mol.GetAtoms()], dtype=INT_TYPE)
one_hot = F.one_hot(types, num_classes=len(atom_encoder))
mask = torch.ones(len(types), dtype=INT_TYPE) * i
ligand_coords.append(coord)
atom_one_hots.append(one_hot)
masks.append(mask)
sizes.append(len(types))
ligand = {
'x': torch.cat(ligand_coords, dim=0).to(device),
'one_hot': torch.cat(atom_one_hots, dim=0).to(device),
'size': torch.tensor(sizes, dtype=INT_TYPE).to(device),
'mask': torch.cat(masks, dim=0).to(device),
}
return ligand
def prepare_ligand_from_pdb(biopython_atoms, atom_encoder):
coord = torch.tensor(np.array([a.get_coord()
for a in biopython_atoms]), dtype=FLOAT_TYPE)
types = torch.tensor([atom_encoder[a.element.capitalize()]
for a in biopython_atoms])
one_hot = F.one_hot(types, num_classes=len(atom_encoder))
return coord, one_hot
def prepare_substructure(ref_ligand, fix_atoms, pdb_model):
if fix_atoms[0].endswith(".sdf"):
# ligand as sdf file
coord, one_hot = prepare_from_sdf_files(fix_atoms, model.lig_type_encoder)
else:
# ligand contained in PDB; given in <chain>:<resi> format
chain, resi = ref_ligand.split(':')
ligand = utils.get_residue_with_resi(pdb_model[chain], int(resi))
fixed_atoms = [a for a in ligand.get_atoms() if a.get_name() in set(fix_atoms)]
coord, one_hot = prepare_ligand_from_pdb(fixed_atoms, model.lig_type_encoder)
return coord, one_hot
def diversify_ligands(model, pocket, mols, timesteps,
sanitize=False,
largest_frag=False,
relax_iter=0):
"""
Diversify ligands for a specified pocket.
Parameters:
model: The model instance used for diversification.
pocket: The pocket information including coordinates and types.
mols: List of RDKit molecule objects to be diversified.
timesteps: Number of denoising steps to apply during diversification.
sanitize: If True, performs molecule sanitization post-generation (default: False).
largest_frag: If True, only the largest fragment of the generated molecule is returned (default: False).
relax_iter: Number of iterations for force field relaxation of the generated molecules (default: 0).
Returns:
A list of diversified RDKit molecule objects.
"""
ligand = prepare_ligands_from_mols(mols, model.lig_type_encoder, device=model.device)
pocket_mask = pocket['mask']
lig_mask = ligand['mask']
# Pocket's center of mass
pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
out_lig, out_pocket, _, _ = model.ddpm.diversify(ligand, pocket, noising_steps=timesteps)
# Move generated molecule back to the original pocket position
pocket_com_after = scatter_mean(out_pocket[:, :model.x_dims], pocket_mask, dim=0)
out_pocket[:, :model.x_dims] += \
(pocket_com_before - pocket_com_after)[pocket_mask]
out_lig[:, :model.x_dims] += \
(pocket_com_before - pocket_com_after)[lig_mask]
# Build mol objects
x = out_lig[:, :model.x_dims].detach().cpu()
atom_type = out_lig[:, model.x_dims:].argmax(1).detach().cpu()
molecules = []
for mol_pc in zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask)):
mol = build_molecule(*mol_pc, model.dataset_info, add_coords=True)
mol = process_molecule(mol,
add_hydrogens=False,
sanitize=sanitize,
relax_iter=relax_iter,
largest_frag=largest_frag)
if mol is not None:
molecules.append(mol)
return molecules
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=Path, default='checkpoints/crossdocked_fullatom_cond.ckpt')
parser.add_argument('--pdbfile', type=str, default='example/5ndu.pdb')
parser.add_argument('--ref_ligand', type=str, default='example/5ndu_linked_mols.sdf')
parser.add_argument('--objective', type=str, default='sa', choices={'qed', 'sa'})
parser.add_argument('--timesteps', type=int, default=100)
parser.add_argument('--population_size', type=int, default=100)
parser.add_argument('--evolution_steps', type=int, default=10)
parser.add_argument('--top_k', type=int, default=7)
parser.add_argument('--outfile', type=Path, default='output.sdf')
parser.add_argument('--relax', action='store_true')
args = parser.parse_args()
pdb_id = Path(args.pdbfile).stem
device = 'cuda' if torch.cuda.is_available() else 'cpu'
population_size = args.population_size
evolution_steps = args.evolution_steps
top_k = args.top_k
# Load model
model = LigandPocketDDPM.load_from_checkpoint(
args.checkpoint, map_location=device)
model = model.to(device)
# Prepare ligand + pocket
# Load PDB
pdb_model = PDBParser(QUIET=True).get_structure('', args.pdbfile)[0]
# Define pocket based on reference ligand
residues = utils.get_pocket_from_ligand(pdb_model, args.ref_ligand)
pocket = model.prepare_pocket(residues, repeats=population_size)
if args.objective == 'qed':
objective_function = MoleculeProperties().calculate_qed
elif args.objective == 'sa':
objective_function = MoleculeProperties().calculate_sa
else:
### IMPLEMENT YOUR OWN OBJECTIVE
### FUNCTIONS HERE
raise ValueError(f"Objective function {args.objective} not recognized.")
ref_mol = Chem.SDMolSupplier(args.ref_ligand)[0]
# Store molecules in history dataframe
buffer = pd.DataFrame(columns=['generation', 'score', 'fate' 'mol', 'smiles'])
# Population initialization
buffer = buffer.append({'generation': 0,
'score': objective_function(ref_mol),
'fate': 'initial', 'mol': ref_mol,
'smiles': Chem.MolToSmiles(ref_mol)}, ignore_index=True)
for generation_idx in range(evolution_steps):
if generation_idx == 0:
molecules = buffer['mol'].tolist() * population_size
else:
# Select top k molecules from previous generation
previous_gen = buffer[buffer['generation'] == generation_idx]
top_k_molecules = previous_gen.nlargest(top_k, 'score')['mol'].tolist()
molecules = top_k_molecules * (population_size // top_k)
# Update the fate of selected top k molecules in the buffer
buffer.loc[buffer['generation'] == generation_idx, 'fate'] = 'survived'
# Ensure the right number of molecules
if len(molecules) < population_size:
molecules += [random.choice(molecules) for _ in range(population_size - len(molecules))]
# Diversify molecules
assert len(molecules) == population_size, f"Wrong number of molecules: {len(molecules)} when it should be {population_size}"
print(f"Generation {generation_idx}, mean score: {np.mean([objective_function(mol) for mol in molecules])}")
molecules = diversify_ligands(model,
pocket,
molecules,
timesteps=args.timesteps,
sanitize=True,
relax_iter=(200 if args.relax else 0))
# Evaluate and save molecules
for mol in molecules:
buffer = buffer.append({'generation': generation_idx + 1,
'score': objective_function(mol),
'fate': 'purged',
'mol': mol,
'smiles': Chem.MolToSmiles(mol)}, ignore_index=True)
# Make SDF files
utils.write_sdf_file(args.outfile, molecules)
# Save buffer
buffer.drop(columns=['mol'])
buffer.to_csv(args.outfile.with_suffix('.csv'))
|