File size: 17,122 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
from pathlib import Path
from time import time
import argparse
import shutil
import random
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import numpy as np
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one, is_aa
from rdkit import Chem
from scipy.ndimage import gaussian_filter
import torch
from analysis.molecule_builder import build_molecule
from analysis.metrics import rdmol_to_smiles
import constants
from constants import covalent_radii, dataset_params
def process_ligand_and_pocket(pdbfile, sdffile,
atom_dict, dist_cutoff, ca_only):
pdb_struct = PDBParser(QUIET=True).get_structure('', pdbfile)
try:
ligand = Chem.SDMolSupplier(str(sdffile))[0]
except:
raise Exception(f'cannot read sdf mol ({sdffile})')
# remove H atoms if not in atom_dict, other atom types that aren't allowed
# should stay so that the entire ligand can be removed from the dataset
lig_atoms = [a.GetSymbol() for a in ligand.GetAtoms()
if (a.GetSymbol().capitalize() in atom_dict or a.element != 'H')]
lig_coords = np.array([list(ligand.GetConformer(0).GetAtomPosition(idx))
for idx in range(ligand.GetNumAtoms())])
try:
lig_one_hot = np.stack([
np.eye(1, len(atom_dict), atom_dict[a.capitalize()]).squeeze()
for a in lig_atoms
])
except KeyError as e:
raise KeyError(
f'{e} not in atom dict ({sdffile})')
# Find interacting pocket residues based on distance cutoff
pocket_residues = []
for residue in pdb_struct[0].get_residues():
res_coords = np.array([a.get_coord() for a in residue.get_atoms()])
if is_aa(residue.get_resname(), standard=True) and \
(((res_coords[:, None, :] - lig_coords[None, :, :]) ** 2).sum(
-1) ** 0.5).min() < dist_cutoff:
pocket_residues.append(residue)
pocket_ids = [f'{res.parent.id}:{res.id[1]}' for res in pocket_residues]
ligand_data = {
'lig_coords': lig_coords,
'lig_one_hot': lig_one_hot,
}
if ca_only:
try:
pocket_one_hot = []
full_coords = []
for res in pocket_residues:
for atom in res.get_atoms():
if atom.name == 'CA':
pocket_one_hot.append(np.eye(1, len(amino_acid_dict),
amino_acid_dict[three_to_one(res.get_resname())]).squeeze())
full_coords.append(atom.coord)
pocket_one_hot = np.stack(pocket_one_hot)
full_coords = np.stack(full_coords)
except KeyError as e:
raise KeyError(
f'{e} not in amino acid dict ({pdbfile}, {sdffile})')
pocket_data = {
'pocket_coords': full_coords,
'pocket_one_hot': pocket_one_hot,
'pocket_ids': pocket_ids
}
else:
full_atoms = np.concatenate(
[np.array([atom.element for atom in res.get_atoms()])
for res in pocket_residues], axis=0)
full_coords = np.concatenate(
[np.array([atom.coord for atom in res.get_atoms()])
for res in pocket_residues], axis=0)
try:
pocket_one_hot = []
for a in full_atoms:
if a in amino_acid_dict:
atom = np.eye(1, len(amino_acid_dict),
amino_acid_dict[a.capitalize()]).squeeze()
elif a != 'H':
atom = np.eye(1, len(amino_acid_dict),
len(amino_acid_dict)).squeeze()
pocket_one_hot.append(atom)
pocket_one_hot = np.stack(pocket_one_hot)
except KeyError as e:
raise KeyError(
f'{e} not in atom dict ({pdbfile})')
pocket_data = {
'pocket_coords': full_coords,
'pocket_one_hot': pocket_one_hot,
'pocket_ids': pocket_ids
}
return ligand_data, pocket_data
def compute_smiles(positions, one_hot, mask):
print("Computing SMILES ...")
atom_types = np.argmax(one_hot, axis=-1)
sections = np.where(np.diff(mask))[0] + 1
positions = [torch.from_numpy(x) for x in np.split(positions, sections)]
atom_types = [torch.from_numpy(x) for x in np.split(atom_types, sections)]
mols_smiles = []
pbar = tqdm(enumerate(zip(positions, atom_types)),
total=len(np.unique(mask)))
for i, (pos, atom_type) in pbar:
mol = build_molecule(pos, atom_type, dataset_info)
# BasicMolecularMetrics() computes SMILES after sanitization
try:
Chem.SanitizeMol(mol)
except ValueError:
continue
mol = rdmol_to_smiles(mol)
if mol is not None:
mols_smiles.append(mol)
pbar.set_description(f'{len(mols_smiles)}/{i + 1} successful')
return mols_smiles
def get_n_nodes(lig_mask, pocket_mask, smooth_sigma=None):
# Joint distribution of ligand's and pocket's number of nodes
idx_lig, n_nodes_lig = np.unique(lig_mask, return_counts=True)
idx_pocket, n_nodes_pocket = np.unique(pocket_mask, return_counts=True)
assert np.all(idx_lig == idx_pocket)
joint_histogram = np.zeros((np.max(n_nodes_lig) + 1,
np.max(n_nodes_pocket) + 1))
for nlig, npocket in zip(n_nodes_lig, n_nodes_pocket):
joint_histogram[nlig, npocket] += 1
print(f'Original histogram: {np.count_nonzero(joint_histogram)}/'
f'{joint_histogram.shape[0] * joint_histogram.shape[1]} bins filled')
# Smooth the histogram
if smooth_sigma is not None:
filtered_histogram = gaussian_filter(
joint_histogram, sigma=smooth_sigma, order=0, mode='constant',
cval=0.0, truncate=4.0)
print(f'Smoothed histogram: {np.count_nonzero(filtered_histogram)}/'
f'{filtered_histogram.shape[0] * filtered_histogram.shape[1]} bins filled')
joint_histogram = filtered_histogram
return joint_histogram
def get_bond_length_arrays(atom_mapping):
bond_arrays = []
for i in range(3):
bond_dict = getattr(constants, f'bonds{i + 1}')
bond_array = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
if a1 in bond_dict and a2 in bond_dict[a1]:
bond_len = bond_dict[a1][a2]
else:
bond_len = 0
bond_array[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(bond_array == bond_array.T)
bond_arrays.append(bond_array)
return bond_arrays
def get_lennard_jones_rm(atom_mapping):
# Bond radii for the Lennard-Jones potential
LJ_rm = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
all_bond_lengths = []
for btype in ['bonds1', 'bonds2', 'bonds3']:
bond_dict = getattr(constants, btype)
if a1 in bond_dict and a2 in bond_dict[a1]:
all_bond_lengths.append(bond_dict[a1][a2])
if len(all_bond_lengths) > 0:
# take the shortest possible bond length because slightly larger
# values aren't penalized as much
bond_len = min(all_bond_lengths)
else:
if a1 == 'others' or a2 == 'others':
bond_len = 0
else:
# Replace missing values with sum of average covalent radii
bond_len = covalent_radii[a1] + covalent_radii[a2]
LJ_rm[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(LJ_rm == LJ_rm.T)
return LJ_rm
def get_type_histograms(lig_one_hot, pocket_one_hot, atom_encoder, aa_encoder):
atom_decoder = list(atom_encoder.keys())
atom_counts = {k: 0 for k in atom_encoder.keys()}
for a in [atom_decoder[x] for x in lig_one_hot.argmax(1)]:
atom_counts[a] += 1
aa_decoder = list(aa_encoder.keys())
aa_counts = {k: 0 for k in aa_encoder.keys()}
for r in [aa_decoder[x] for x in pocket_one_hot.argmax(1)]:
aa_counts[r] += 1
return atom_counts, aa_counts
def saveall(filename, pdb_and_mol_ids, lig_coords, lig_one_hot, lig_mask,
pocket_coords, pocket_one_hot, pocket_mask):
np.savez(filename,
names=pdb_and_mol_ids,
lig_coords=lig_coords,
lig_one_hot=lig_one_hot,
lig_mask=lig_mask,
pocket_coords=pocket_coords,
pocket_one_hot=pocket_one_hot,
pocket_mask=pocket_mask
)
return True
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('basedir', type=Path)
parser.add_argument('--outdir', type=Path, default=None)
parser.add_argument('--no_H', action='store_true')
parser.add_argument('--ca_only', action='store_true')
parser.add_argument('--dist_cutoff', type=float, default=8.0)
parser.add_argument('--random_seed', type=int, default=42)
args = parser.parse_args()
datadir = args.basedir / 'crossdocked_pocket10/'
if args.ca_only:
dataset_info = dataset_params['crossdock']
else:
dataset_info = dataset_params['crossdock_full']
amino_acid_dict = dataset_info['aa_encoder']
atom_dict = dataset_info['atom_encoder']
atom_decoder = dataset_info['atom_decoder']
# Make output directory
if args.outdir is None:
suffix = '_crossdock' if 'H' in atom_dict else '_crossdock_noH'
suffix += '_ca_only_temp' if args.ca_only else '_full_temp'
processed_dir = Path(args.basedir, f'processed{suffix}')
else:
processed_dir = args.outdir
processed_dir.mkdir(exist_ok=True, parents=True)
# Read data split
split_path = Path(args.basedir, 'split_by_name.pt')
data_split = torch.load(split_path)
# There is no validation set, copy 300 training examples (the validation set
# is not very important in this application)
# Note: before we had a data leak but it should not matter too much as most
# metrics monitored during training are independent of the pockets
data_split['val'] = random.sample(data_split['train'], 300)
n_train_before = len(data_split['train'])
n_val_before = len(data_split['val'])
n_test_before = len(data_split['test'])
failed_save = []
n_samples_after = {}
for split in data_split.keys():
lig_coords = []
lig_one_hot = []
lig_mask = []
pocket_coords = []
pocket_one_hot = []
pocket_mask = []
pdb_and_mol_ids = []
count_protein = []
count_ligand = []
count_total = []
count = 0
pdb_sdf_dir = processed_dir / split
pdb_sdf_dir.mkdir(exist_ok=True)
tic = time()
num_failed = 0
pbar = tqdm(data_split[split])
pbar.set_description(f'#failed: {num_failed}')
for pocket_fn, ligand_fn in pbar:
sdffile = datadir / f'{ligand_fn}'
pdbfile = datadir / f'{pocket_fn}'
try:
struct_copy = PDBParser(QUIET=True).get_structure('', pdbfile)
except:
num_failed += 1
failed_save.append((pocket_fn, ligand_fn))
print(failed_save[-1])
pbar.set_description(f'#failed: {num_failed}')
continue
try:
ligand_data, pocket_data = process_ligand_and_pocket(
pdbfile, sdffile,
atom_dict=atom_dict, dist_cutoff=args.dist_cutoff,
ca_only=args.ca_only)
except (KeyError, AssertionError, FileNotFoundError, IndexError,
ValueError) as e:
print(type(e).__name__, e, pocket_fn, ligand_fn)
num_failed += 1
pbar.set_description(f'#failed: {num_failed}')
continue
pdb_and_mol_ids.append(f"{pocket_fn}_{ligand_fn}")
lig_coords.append(ligand_data['lig_coords'])
lig_one_hot.append(ligand_data['lig_one_hot'])
lig_mask.append(count * np.ones(len(ligand_data['lig_coords'])))
pocket_coords.append(pocket_data['pocket_coords'])
pocket_one_hot.append(pocket_data['pocket_one_hot'])
pocket_mask.append(
count * np.ones(len(pocket_data['pocket_coords'])))
count_protein.append(pocket_data['pocket_coords'].shape[0])
count_ligand.append(ligand_data['lig_coords'].shape[0])
count_total.append(pocket_data['pocket_coords'].shape[0] +
ligand_data['lig_coords'].shape[0])
count += 1
if split in {'val', 'test'}:
# Copy PDB file
new_rec_name = Path(pdbfile).stem.replace('_', '-')
pdb_file_out = Path(pdb_sdf_dir, f"{new_rec_name}.pdb")
shutil.copy(pdbfile, pdb_file_out)
# Copy SDF file
new_lig_name = new_rec_name + '_' + Path(sdffile).stem.replace('_', '-')
sdf_file_out = Path(pdb_sdf_dir, f'{new_lig_name}.sdf')
shutil.copy(sdffile, sdf_file_out)
# specify pocket residues
with open(Path(pdb_sdf_dir, f'{new_lig_name}.txt'), 'w') as f:
f.write(' '.join(pocket_data['pocket_ids']))
lig_coords = np.concatenate(lig_coords, axis=0)
lig_one_hot = np.concatenate(lig_one_hot, axis=0)
lig_mask = np.concatenate(lig_mask, axis=0)
pocket_coords = np.concatenate(pocket_coords, axis=0)
pocket_one_hot = np.concatenate(pocket_one_hot, axis=0)
pocket_mask = np.concatenate(pocket_mask, axis=0)
saveall(processed_dir / f'{split}.npz', pdb_and_mol_ids, lig_coords,
lig_one_hot, lig_mask, pocket_coords,
pocket_one_hot, pocket_mask)
n_samples_after[split] = len(pdb_and_mol_ids)
print(f"Processing {split} set took {(time() - tic) / 60.0:.2f} minutes")
# --------------------------------------------------------------------------
# Compute statistics & additional information
# --------------------------------------------------------------------------
with np.load(processed_dir / 'train.npz', allow_pickle=True) as data:
lig_mask = data['lig_mask']
pocket_mask = data['pocket_mask']
lig_coords = data['lig_coords']
lig_one_hot = data['lig_one_hot']
pocket_one_hot = data['pocket_one_hot']
# Compute SMILES for all training examples
train_smiles = compute_smiles(lig_coords, lig_one_hot, lig_mask)
np.save(processed_dir / 'train_smiles.npy', train_smiles)
# Joint histogram of number of ligand and pocket nodes
n_nodes = get_n_nodes(lig_mask, pocket_mask, smooth_sigma=1.0)
np.save(Path(processed_dir, 'size_distribution.npy'), n_nodes)
# Convert bond length dictionaries to arrays for batch processing
bonds1, bonds2, bonds3 = get_bond_length_arrays(atom_dict)
# Get bond length definitions for Lennard-Jones potential
rm_LJ = get_lennard_jones_rm(atom_dict)
# Get histograms of ligand and pocket node types
atom_hist, aa_hist = get_type_histograms(lig_one_hot, pocket_one_hot,
atom_dict, amino_acid_dict)
# Create summary string
summary_string = '# SUMMARY\n\n'
summary_string += '# Before processing\n'
summary_string += f'num_samples train: {n_train_before}\n'
summary_string += f'num_samples val: {n_val_before}\n'
summary_string += f'num_samples test: {n_test_before}\n\n'
summary_string += '# After processing\n'
summary_string += f"num_samples train: {n_samples_after['train']}\n"
summary_string += f"num_samples val: {n_samples_after['val']}\n"
summary_string += f"num_samples test: {n_samples_after['test']}\n\n"
summary_string += '# Info\n'
summary_string += f"'atom_encoder': {atom_dict}\n"
summary_string += f"'atom_decoder': {list(atom_dict.keys())}\n"
summary_string += f"'aa_encoder': {amino_acid_dict}\n"
summary_string += f"'aa_decoder': {list(amino_acid_dict.keys())}\n"
summary_string += f"'bonds1': {bonds1.tolist()}\n"
summary_string += f"'bonds2': {bonds2.tolist()}\n"
summary_string += f"'bonds3': {bonds3.tolist()}\n"
summary_string += f"'lennard_jones_rm': {rm_LJ.tolist()}\n"
summary_string += f"'atom_hist': {atom_hist}\n"
summary_string += f"'aa_hist': {aa_hist}\n"
summary_string += f"'n_nodes': {n_nodes.tolist()}\n"
# Write summary to text file
with open(processed_dir / 'summary.txt', 'w') as f:
f.write(summary_string)
# Print summary
print(summary_string)
print(failed_save)
|