File size: 7,171 Bytes
4742cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from typing import Union, Iterable
import numpy as np
import torch
import torch.nn.functional as F
from rdkit import Chem
import networkx as nx
from networkx.algorithms import isomorphism
from Bio.PDB.Polypeptide import is_aa
class Queue():
def __init__(self, max_len=50):
self.items = []
self.max_len = max_len
def __len__(self):
return len(self.items)
def add(self, item):
self.items.insert(0, item)
if len(self) > self.max_len:
self.items.pop()
def mean(self):
return np.mean(self.items)
def std(self):
return np.std(self.items)
def reverse_tensor(x):
return x[torch.arange(x.size(0) - 1, -1, -1)]
#####
def get_grad_norm(
parameters: Union[torch.Tensor, Iterable[torch.Tensor]],
norm_type: float = 2.0) -> torch.Tensor:
"""
Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
total_norm = torch.norm(torch.stack(
[torch.norm(p.grad.detach(), norm_type).to(device) for p in
parameters]), norm_type)
return total_norm
def write_xyz_file(coords, atom_types, filename):
out = f"{len(coords)}\n\n"
assert len(coords) == len(atom_types)
for i in range(len(coords)):
out += f"{atom_types[i]} {coords[i, 0]:.3f} {coords[i, 1]:.3f} {coords[i, 2]:.3f}\n"
with open(filename, 'w') as f:
f.write(out)
def write_sdf_file(sdf_path, molecules):
# NOTE Changed to be compatitble with more versions of rdkit
#with Chem.SDWriter(str(sdf_path)) as w:
# for mol in molecules:
# w.write(mol)
w = Chem.SDWriter(str(sdf_path))
w.SetKekulize(False)
for m in molecules:
if m is not None:
w.write(m)
# print(f'Wrote SDF file to {sdf_path}')
def residues_to_atoms(x_ca, atom_encoder):
x = x_ca
one_hot = F.one_hot(
torch.tensor(atom_encoder['C'], device=x_ca.device),
num_classes=len(atom_encoder)
).repeat(*x_ca.shape[:-1], 1)
return x, one_hot
def get_residue_with_resi(pdb_chain, resi):
res = [x for x in pdb_chain.get_residues() if x.id[1] == resi]
assert len(res) == 1
return res[0]
def get_pocket_from_ligand(pdb_model, ligand, dist_cutoff=8.0):
if ligand.endswith(".sdf"):
# ligand as sdf file
rdmol = Chem.SDMolSupplier(str(ligand))[0]
ligand_coords = torch.from_numpy(rdmol.GetConformer().GetPositions()).float()
resi = None
else:
# ligand contained in PDB; given in <chain>:<resi> format
chain, resi = ligand.split(':')
ligand = get_residue_with_resi(pdb_model[chain], int(resi))
ligand_coords = torch.from_numpy(
np.array([a.get_coord() for a in ligand.get_atoms()]))
pocket_residues = []
for residue in pdb_model.get_residues():
if residue.id[1] == resi:
continue # skip ligand itself
res_coords = torch.from_numpy(
np.array([a.get_coord() for a in residue.get_atoms()]))
if is_aa(residue.get_resname(), standard=True) \
and torch.cdist(res_coords, ligand_coords).min() < dist_cutoff:
pocket_residues.append(residue)
return pocket_residues
def batch_to_list(data, batch_mask):
# data_list = []
# for i in torch.unique(batch_mask):
# data_list.append(data[batch_mask == i])
# return data_list
# make sure batch_mask is increasing
idx = torch.argsort(batch_mask)
batch_mask = batch_mask[idx]
data = data[idx]
chunk_sizes = torch.unique(batch_mask, return_counts=True)[1].tolist()
return torch.split(data, chunk_sizes)
def num_nodes_to_batch_mask(n_samples, num_nodes, device):
assert isinstance(num_nodes, int) or len(num_nodes) == n_samples
if isinstance(num_nodes, torch.Tensor):
num_nodes = num_nodes.to(device)
sample_inds = torch.arange(n_samples, device=device)
return torch.repeat_interleave(sample_inds, num_nodes)
def rdmol_to_nxgraph(rdmol):
graph = nx.Graph()
for atom in rdmol.GetAtoms():
# Add the atoms as nodes
graph.add_node(atom.GetIdx(), atom_type=atom.GetAtomicNum())
# Add the bonds as edges
for bond in rdmol.GetBonds():
graph.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx())
return graph
def calc_rmsd(mol_a, mol_b):
""" Calculate RMSD of two molecules with unknown atom correspondence. """
graph_a = rdmol_to_nxgraph(mol_a)
graph_b = rdmol_to_nxgraph(mol_b)
gm = isomorphism.GraphMatcher(
graph_a, graph_b,
node_match=lambda na, nb: na['atom_type'] == nb['atom_type'])
isomorphisms = list(gm.isomorphisms_iter())
if len(isomorphisms) < 1:
return None
all_rmsds = []
for mapping in isomorphisms:
atom_types_a = [atom.GetAtomicNum() for atom in mol_a.GetAtoms()]
atom_types_b = [mol_b.GetAtomWithIdx(mapping[i]).GetAtomicNum()
for i in range(mol_b.GetNumAtoms())]
assert atom_types_a == atom_types_b
conf_a = mol_a.GetConformer()
coords_a = np.array([conf_a.GetAtomPosition(i)
for i in range(mol_a.GetNumAtoms())])
conf_b = mol_b.GetConformer()
coords_b = np.array([conf_b.GetAtomPosition(mapping[i])
for i in range(mol_b.GetNumAtoms())])
diff = coords_a - coords_b
rmsd = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
all_rmsds.append(rmsd)
if len(isomorphisms) > 1:
print("More than one isomorphism found. Returning minimum RMSD.")
return min(all_rmsds)
class AppendVirtualNodes:
def __init__(self, max_ligand_size, atom_encoder, symbol):
self.max_ligand_size = max_ligand_size
self.atom_encoder = atom_encoder
self.vidx = atom_encoder[symbol]
def __call__(self, data):
n_virt = self.max_ligand_size - data['num_lig_atoms']
mu = data['lig_coords'].mean(0, keepdim=True)
sigma = data['lig_coords'].std(0).max()
virt_coords = torch.randn(n_virt, 3) * sigma + mu
# insert virtual atom column
one_hot = torch.cat((data['lig_one_hot'][:, :self.vidx],
torch.zeros(data['num_lig_atoms'])[:, None],
data['lig_one_hot'][:, self.vidx:]), dim=1)
virt_one_hot = torch.zeros(n_virt, len(self.atom_encoder))
virt_one_hot[:, self.vidx] = 1
virt_mask = torch.ones(n_virt) * data['lig_mask'][0]
data['lig_coords'] = torch.cat((data['lig_coords'], virt_coords))
data['lig_one_hot'] = torch.cat((one_hot, virt_one_hot))
data['num_lig_atoms'] = self.max_ligand_size
data['lig_mask'] = torch.cat((data['lig_mask'], virt_mask))
data['num_virtual_atoms'] = n_virt
return data
|