|
|
from itertools import accumulate |
|
|
import numpy as np |
|
|
import torch |
|
|
from torch.utils.data import Dataset |
|
|
|
|
|
|
|
|
class ProcessedLigandPocketDataset(Dataset): |
|
|
def __init__(self, npz_path, center=True, transform=None): |
|
|
|
|
|
self.transform = transform |
|
|
|
|
|
with np.load(npz_path, allow_pickle=True) as f: |
|
|
data = {key: val for key, val in f.items()} |
|
|
|
|
|
|
|
|
self.data = {} |
|
|
for (k, v) in data.items(): |
|
|
if k == 'names' or k == 'receptors': |
|
|
self.data[k] = v |
|
|
continue |
|
|
|
|
|
sections = np.where(np.diff(data['lig_mask']))[0] + 1 \ |
|
|
if 'lig' in k \ |
|
|
else np.where(np.diff(data['pocket_mask']))[0] + 1 |
|
|
self.data[k] = [torch.from_numpy(x) for x in np.split(v, sections)] |
|
|
|
|
|
|
|
|
if k == 'lig_mask': |
|
|
self.data['num_lig_atoms'] = \ |
|
|
torch.tensor([len(x) for x in self.data['lig_mask']]) |
|
|
elif k == 'pocket_mask': |
|
|
self.data['num_pocket_nodes'] = \ |
|
|
torch.tensor([len(x) for x in self.data['pocket_mask']]) |
|
|
|
|
|
if center: |
|
|
for i in range(len(self.data['lig_coords'])): |
|
|
mean = (self.data['lig_coords'][i].sum(0) + |
|
|
self.data['pocket_coords'][i].sum(0)) / \ |
|
|
(len(self.data['lig_coords'][i]) + len(self.data['pocket_coords'][i])) |
|
|
self.data['lig_coords'][i] = self.data['lig_coords'][i] - mean |
|
|
self.data['pocket_coords'][i] = self.data['pocket_coords'][i] - mean |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.data['names']) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
data = {key: val[idx] for key, val in self.data.items()} |
|
|
if self.transform is not None: |
|
|
data = self.transform(data) |
|
|
return data |
|
|
|
|
|
@staticmethod |
|
|
def collate_fn(batch): |
|
|
out = {} |
|
|
for prop in batch[0].keys(): |
|
|
|
|
|
if prop == 'names' or prop == 'receptors': |
|
|
out[prop] = [x[prop] for x in batch] |
|
|
elif prop == 'num_lig_atoms' or prop == 'num_pocket_nodes' \ |
|
|
or prop == 'num_virtual_atoms': |
|
|
out[prop] = torch.tensor([x[prop] for x in batch]) |
|
|
elif 'mask' in prop: |
|
|
|
|
|
|
|
|
out[prop] = torch.cat([i * torch.ones(len(x[prop])) |
|
|
for i, x in enumerate(batch)], dim=0) |
|
|
else: |
|
|
out[prop] = torch.cat([x[prop] for x in batch], dim=0) |
|
|
|
|
|
return out |
|
|
|