|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from equivariant_diffusion.egnn_new import EGNN, GNN |
|
|
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion |
|
|
remove_mean_batch = EnVariationalDiffusion.remove_mean_batch |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
class EGNNDynamics(nn.Module): |
|
|
def __init__(self, atom_nf, residue_nf, |
|
|
n_dims, joint_nf=16, hidden_nf=64, device='cpu', |
|
|
act_fn=torch.nn.SiLU(), n_layers=4, attention=False, |
|
|
condition_time=True, tanh=False, mode='egnn_dynamics', |
|
|
norm_constant=0, inv_sublayers=2, sin_embedding=False, |
|
|
normalization_factor=100, aggregation_method='sum', |
|
|
update_pocket_coords=True, edge_cutoff_ligand=None, |
|
|
edge_cutoff_pocket=None, edge_cutoff_interaction=None, |
|
|
reflection_equivariant=True, edge_embedding_dim=None): |
|
|
super().__init__() |
|
|
self.mode = mode |
|
|
self.edge_cutoff_l = edge_cutoff_ligand |
|
|
self.edge_cutoff_p = edge_cutoff_pocket |
|
|
self.edge_cutoff_i = edge_cutoff_interaction |
|
|
self.edge_nf = edge_embedding_dim |
|
|
|
|
|
self.atom_encoder = nn.Sequential( |
|
|
nn.Linear(atom_nf, 2 * atom_nf), |
|
|
act_fn, |
|
|
nn.Linear(2 * atom_nf, joint_nf) |
|
|
) |
|
|
|
|
|
self.atom_decoder = nn.Sequential( |
|
|
nn.Linear(joint_nf, 2 * atom_nf), |
|
|
act_fn, |
|
|
nn.Linear(2 * atom_nf, atom_nf) |
|
|
) |
|
|
|
|
|
self.residue_encoder = nn.Sequential( |
|
|
nn.Linear(residue_nf, 2 * residue_nf), |
|
|
act_fn, |
|
|
nn.Linear(2 * residue_nf, joint_nf) |
|
|
) |
|
|
|
|
|
self.residue_decoder = nn.Sequential( |
|
|
nn.Linear(joint_nf, 2 * residue_nf), |
|
|
act_fn, |
|
|
nn.Linear(2 * residue_nf, residue_nf) |
|
|
) |
|
|
|
|
|
self.edge_embedding = nn.Embedding(3, self.edge_nf) \ |
|
|
if self.edge_nf is not None else None |
|
|
self.edge_nf = 0 if self.edge_nf is None else self.edge_nf |
|
|
|
|
|
if condition_time: |
|
|
dynamics_node_nf = joint_nf + 1 |
|
|
else: |
|
|
print('Warning: dynamics model is _not_ conditioned on time.') |
|
|
dynamics_node_nf = joint_nf |
|
|
|
|
|
if mode == 'egnn_dynamics': |
|
|
self.egnn = EGNN( |
|
|
in_node_nf=dynamics_node_nf, in_edge_nf=self.edge_nf, |
|
|
hidden_nf=hidden_nf, device=device, act_fn=act_fn, |
|
|
n_layers=n_layers, attention=attention, tanh=tanh, |
|
|
norm_constant=norm_constant, |
|
|
inv_sublayers=inv_sublayers, sin_embedding=sin_embedding, |
|
|
normalization_factor=normalization_factor, |
|
|
aggregation_method=aggregation_method, |
|
|
reflection_equiv=reflection_equivariant |
|
|
) |
|
|
self.node_nf = dynamics_node_nf |
|
|
self.update_pocket_coords = update_pocket_coords |
|
|
|
|
|
elif mode == 'gnn_dynamics': |
|
|
self.gnn = GNN( |
|
|
in_node_nf=dynamics_node_nf + n_dims, in_edge_nf=self.edge_nf, |
|
|
hidden_nf=hidden_nf, out_node_nf=n_dims + dynamics_node_nf, |
|
|
device=device, act_fn=act_fn, n_layers=n_layers, |
|
|
attention=attention, normalization_factor=normalization_factor, |
|
|
aggregation_method=aggregation_method) |
|
|
|
|
|
self.device = device |
|
|
self.n_dims = n_dims |
|
|
self.condition_time = condition_time |
|
|
|
|
|
def forward(self, xh_atoms, xh_residues, t, mask_atoms, mask_residues): |
|
|
|
|
|
x_atoms = xh_atoms[:, :self.n_dims].clone() |
|
|
h_atoms = xh_atoms[:, self.n_dims:].clone() |
|
|
|
|
|
x_residues = xh_residues[:, :self.n_dims].clone() |
|
|
h_residues = xh_residues[:, self.n_dims:].clone() |
|
|
|
|
|
|
|
|
h_atoms = self.atom_encoder(h_atoms) |
|
|
h_residues = self.residue_encoder(h_residues) |
|
|
|
|
|
|
|
|
x = torch.cat((x_atoms, x_residues), dim=0) |
|
|
h = torch.cat((h_atoms, h_residues), dim=0) |
|
|
mask = torch.cat([mask_atoms, mask_residues]) |
|
|
|
|
|
if self.condition_time: |
|
|
if np.prod(t.size()) == 1: |
|
|
|
|
|
h_time = torch.empty_like(h[:, 0:1]).fill_(t.item()) |
|
|
else: |
|
|
|
|
|
h_time = t[mask] |
|
|
h = torch.cat([h, h_time], dim=1) |
|
|
|
|
|
|
|
|
edges = self.get_edges(mask_atoms, mask_residues, x_atoms, x_residues) |
|
|
assert torch.all(mask[edges[0]] == mask[edges[1]]) |
|
|
|
|
|
|
|
|
if self.edge_nf > 0: |
|
|
|
|
|
edge_types = torch.zeros(edges.size(1), dtype=int, device=edges.device) |
|
|
edge_types[(edges[0] < len(mask_atoms)) & (edges[1] < len(mask_atoms))] = 1 |
|
|
edge_types[(edges[0] >= len(mask_atoms)) & (edges[1] >= len(mask_atoms))] = 2 |
|
|
|
|
|
|
|
|
edge_types = self.edge_embedding(edge_types) |
|
|
else: |
|
|
edge_types = None |
|
|
|
|
|
if self.mode == 'egnn_dynamics': |
|
|
update_coords_mask = None if self.update_pocket_coords \ |
|
|
else torch.cat((torch.ones_like(mask_atoms), |
|
|
torch.zeros_like(mask_residues))).unsqueeze(1) |
|
|
h_final, x_final = self.egnn(h, x, edges, |
|
|
update_coords_mask=update_coords_mask, |
|
|
batch_mask=mask, edge_attr=edge_types) |
|
|
vel = (x_final - x) |
|
|
|
|
|
elif self.mode == 'gnn_dynamics': |
|
|
xh = torch.cat([x, h], dim=1) |
|
|
output = self.gnn(xh, edges, node_mask=None, edge_attr=edge_types) |
|
|
vel = output[:, :3] |
|
|
h_final = output[:, 3:] |
|
|
|
|
|
else: |
|
|
raise Exception("Wrong mode %s" % self.mode) |
|
|
|
|
|
if self.condition_time: |
|
|
|
|
|
h_final = h_final[:, :-1] |
|
|
|
|
|
|
|
|
h_final_atoms = self.atom_decoder(h_final[:len(mask_atoms)]) |
|
|
h_final_residues = self.residue_decoder(h_final[len(mask_atoms):]) |
|
|
|
|
|
if torch.any(torch.isnan(vel)): |
|
|
if self.training: |
|
|
vel[torch.isnan(vel)] = 0.0 |
|
|
else: |
|
|
raise ValueError("NaN detected in EGNN output") |
|
|
|
|
|
if self.update_pocket_coords: |
|
|
|
|
|
|
|
|
vel = remove_mean_batch(vel, mask) |
|
|
|
|
|
return torch.cat([vel[:len(mask_atoms)], h_final_atoms], dim=-1), \ |
|
|
torch.cat([vel[len(mask_atoms):], h_final_residues], dim=-1) |
|
|
|
|
|
def get_edges(self, batch_mask_ligand, batch_mask_pocket, x_ligand, x_pocket): |
|
|
adj_ligand = batch_mask_ligand[:, None] == batch_mask_ligand[None, :] |
|
|
adj_pocket = batch_mask_pocket[:, None] == batch_mask_pocket[None, :] |
|
|
adj_cross = batch_mask_ligand[:, None] == batch_mask_pocket[None, :] |
|
|
|
|
|
if self.edge_cutoff_l is not None: |
|
|
adj_ligand = adj_ligand & (torch.cdist(x_ligand, x_ligand) <= self.edge_cutoff_l) |
|
|
|
|
|
if self.edge_cutoff_p is not None: |
|
|
adj_pocket = adj_pocket & (torch.cdist(x_pocket, x_pocket) <= self.edge_cutoff_p) |
|
|
|
|
|
if self.edge_cutoff_i is not None: |
|
|
adj_cross = adj_cross & (torch.cdist(x_ligand, x_pocket) <= self.edge_cutoff_i) |
|
|
|
|
|
adj = torch.cat((torch.cat((adj_ligand, adj_cross), dim=1), |
|
|
torch.cat((adj_cross.T, adj_pocket), dim=1)), dim=0) |
|
|
edges = torch.stack(torch.where(adj), dim=0) |
|
|
|
|
|
return edges |
|
|
|