import warnings import tempfile import torch import numpy as np from rdkit import Chem from rdkit.Chem.rdForceFieldHelpers import UFFOptimizeMolecule, UFFHasAllMoleculeParams import openbabel import utils from constants import bonds1, bonds2, bonds3, margin1, margin2, margin3, \ bond_dict def get_bond_order(atom1, atom2, distance): distance = 100 * distance # We change the metric if atom1 in bonds3 and atom2 in bonds3[atom1] and distance < bonds3[atom1][atom2] + margin3: return 3 # Triple if atom1 in bonds2 and atom2 in bonds2[atom1] and distance < bonds2[atom1][atom2] + margin2: return 2 # Double if atom1 in bonds1 and atom2 in bonds1[atom1] and distance < bonds1[atom1][atom2] + margin1: return 1 # Single return 0 # No bond def get_bond_order_batch(atoms1, atoms2, distances, dataset_info): if isinstance(atoms1, np.ndarray): atoms1 = torch.from_numpy(atoms1) if isinstance(atoms2, np.ndarray): atoms2 = torch.from_numpy(atoms2) if isinstance(distances, np.ndarray): distances = torch.from_numpy(distances) distances = 100 * distances # We change the metric bonds1 = torch.tensor(dataset_info['bonds1'], device=atoms1.device) bonds2 = torch.tensor(dataset_info['bonds2'], device=atoms1.device) bonds3 = torch.tensor(dataset_info['bonds3'], device=atoms1.device) bond_types = torch.zeros_like(atoms1) # 0: No bond # Single bond_types[distances < bonds1[atoms1, atoms2] + margin1] = 1 # Double (note that already assigned single bonds will be overwritten) bond_types[distances < bonds2[atoms1, atoms2] + margin2] = 2 # Triple bond_types[distances < bonds3[atoms1, atoms2] + margin3] = 3 return bond_types def make_mol_openbabel(positions, atom_types, atom_decoder): """ Build an RDKit molecule using openbabel for creating bonds Args: positions: N x 3 atom_types: N atom_decoder: maps indices to atom types Returns: rdkit molecule """ atom_types = [atom_decoder[x] for x in atom_types] with tempfile.NamedTemporaryFile() as tmp: tmp_file = tmp.name # Write xyz file utils.write_xyz_file(positions, atom_types, tmp_file) # Convert to sdf file with openbabel # openbabel will add bonds obConversion = openbabel.OBConversion() obConversion.SetInAndOutFormats("xyz", "sdf") ob_mol = openbabel.OBMol() obConversion.ReadFile(ob_mol, tmp_file) obConversion.WriteFile(ob_mol, tmp_file) # Read sdf file with RDKit tmp_mol = Chem.SDMolSupplier(tmp_file, sanitize=False)[0] # Build new molecule. This is a workaround to remove radicals. mol = Chem.RWMol() for atom in tmp_mol.GetAtoms(): mol.AddAtom(Chem.Atom(atom.GetSymbol())) mol.AddConformer(tmp_mol.GetConformer(0)) for bond in tmp_mol.GetBonds(): mol.AddBond(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(), bond.GetBondType()) return mol def make_mol_edm(positions, atom_types, dataset_info, add_coords): """ Equivalent to EDM's way of building RDKit molecules """ n = len(positions) # (X, A, E): atom_types, adjacency matrix, edge_types # X: N (int) # A: N x N (bool) -> (binary adjacency matrix) # E: N x N (int) -> (bond type, 0 if no bond) pos = positions.unsqueeze(0) # add batch dim dists = torch.cdist(pos, pos, p=2).squeeze(0).view(-1) # remove batch dim & flatten atoms1, atoms2 = torch.cartesian_prod(atom_types, atom_types).T E_full = get_bond_order_batch(atoms1, atoms2, dists, dataset_info).view(n, n) E = torch.tril(E_full, diagonal=-1) # Warning: the graph should be DIRECTED A = E.bool() X = atom_types mol = Chem.RWMol() for atom in X: a = Chem.Atom(dataset_info["atom_decoder"][atom.item()]) mol.AddAtom(a) all_bonds = torch.nonzero(A) for bond in all_bonds: mol.AddBond(bond[0].item(), bond[1].item(), bond_dict[E[bond[0], bond[1]].item()]) if add_coords: conf = Chem.Conformer(mol.GetNumAtoms()) for i in range(mol.GetNumAtoms()): conf.SetAtomPosition(i, (positions[i, 0].item(), positions[i, 1].item(), positions[i, 2].item())) mol.AddConformer(conf) return mol def build_molecule(positions, atom_types, dataset_info, add_coords=False, use_openbabel=True): """ Build RDKit molecule Args: positions: N x 3 atom_types: N dataset_info: dict add_coords: Add conformer to mol (always added if use_openbabel=True) use_openbabel: use OpenBabel to create bonds Returns: RDKit molecule """ if use_openbabel: mol = make_mol_openbabel(positions, atom_types, dataset_info["atom_decoder"]) else: mol = make_mol_edm(positions, atom_types, dataset_info, add_coords) return mol def process_molecule(rdmol, add_hydrogens=False, sanitize=False, relax_iter=0, largest_frag=False): """ Apply filters to an RDKit molecule. Makes a copy first. Args: rdmol: rdkit molecule add_hydrogens sanitize relax_iter: maximum number of UFF optimization iterations largest_frag: filter out the largest fragment in a set of disjoint molecules Returns: RDKit molecule or None if it does not pass the filters """ # Create a copy mol = Chem.Mol(rdmol) if sanitize: try: Chem.SanitizeMol(mol) except ValueError: warnings.warn('Sanitization failed. Returning None.') return None if add_hydrogens: mol = Chem.AddHs(mol, addCoords=(len(mol.GetConformers()) > 0)) if largest_frag: mol_frags = Chem.GetMolFrags(mol, asMols=True, sanitizeFrags=False) mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms()) if sanitize: # sanitize the updated molecule try: Chem.SanitizeMol(mol) except ValueError: return None if relax_iter > 0: if not UFFHasAllMoleculeParams(mol): warnings.warn('UFF parameters not available for all atoms. ' 'Returning None.') return None try: uff_relax(mol, relax_iter) if sanitize: # sanitize the updated molecule Chem.SanitizeMol(mol) except (RuntimeError, ValueError) as e: return None return mol def uff_relax(mol, max_iter=200): """ Uses RDKit's universal force field (UFF) implementation to optimize a molecule. """ more_iterations_required = UFFOptimizeMolecule(mol, maxIters=max_iter) if more_iterations_required: warnings.warn(f'Maximum number of FF iterations reached. ' f'Returning molecule after {max_iter} relaxation steps.') return more_iterations_required def filter_rd_mol(rdmol): """ Filter out RDMols if they have a 3-3 ring intersection adapted from: https://github.com/luost26/3D-Generative-SBDD/blob/main/utils/chem.py """ ring_info = rdmol.GetRingInfo() ring_info.AtomRings() rings = [set(r) for r in ring_info.AtomRings()] # 3-3 ring intersection for i, ring_a in enumerate(rings): if len(ring_a) != 3: continue for j, ring_b in enumerate(rings): if i <= j: continue inter = ring_a.intersection(ring_b) if (len(ring_b) == 3) and (len(inter) > 0): return False return True