import numpy as np from constants import CA_C_DIST, N_CA_DIST, N_CA_C_ANGLE def rotation_matrix(angle, axis): """ Args: angle: (n,) axis: 0=x, 1=y, 2=z Returns: (n, 3, 3) """ n = len(angle) R = np.eye(3)[None, :, :].repeat(n, axis=0) axis = 2 - axis start = axis // 2 step = axis % 2 + 1 s = slice(start, start + step + 1, step) R[:, s, s] = np.array( [[np.cos(angle), (-1) ** (axis + 1) * np.sin(angle)], [(-1) ** axis * np.sin(angle), np.cos(angle)]] ).transpose(2, 0, 1) return R def get_bb_transform(n_xyz, ca_xyz, c_xyz): """ Compute translation and rotation of the canoncical backbone frame (triangle N-Ca-C) from a position with Ca at the origin, N on the x-axis and C in the xy-plane to the global position of the backbone frame Args: n_xyz: (n, 3) ca_xyz: (n, 3) c_xyz: (n, 3) Returns: quaternion represented as array of shape (n, 4) translation vector which is an array of shape (n, 3) """ translation = ca_xyz n_xyz = n_xyz - translation c_xyz = c_xyz - translation # Find rotation matrix that aligns the coordinate systems # rotate around y-axis to move N into the xy-plane theta_y = np.arctan2(n_xyz[:, 2], -n_xyz[:, 0]) Ry = rotation_matrix(theta_y, 1) n_xyz = np.einsum('noi,ni->no', Ry.transpose(0, 2, 1), n_xyz) # rotate around z-axis to move N onto the x-axis theta_z = np.arctan2(n_xyz[:, 1], n_xyz[:, 0]) Rz = rotation_matrix(theta_z, 2) # n_xyz = np.einsum('noi,ni->no', Rz.transpose(0, 2, 1), n_xyz) # rotate around x-axis to move C into the xy-plane c_xyz = np.einsum('noj,nji,ni->no', Rz.transpose(0, 2, 1), Ry.transpose(0, 2, 1), c_xyz) theta_x = np.arctan2(c_xyz[:, 2], c_xyz[:, 1]) Rx = rotation_matrix(theta_x, 0) # Final rotation matrix R = np.einsum('nok,nkj,nji->noi', Ry, Rz, Rx) # Convert to quaternion # q = w + i*u_x + j*u_y + k * u_z quaternion = rotation_matrix_to_quaternion(R) return quaternion, translation def get_bb_coords_from_transform(ca_coords, quaternion): """ Args: ca_coords: (n, 3) quaternion: (n, 4) Returns: backbone coords (n*3, 3), order is [N, CA, C] backbone atom types as a list of length n*3 """ R = quaternion_to_rotation_matrix(quaternion) bb_coords = np.tile(np.array( [[N_CA_DIST, 0, 0], [0, 0, 0], [CA_C_DIST * np.cos(N_CA_C_ANGLE), CA_C_DIST * np.sin(N_CA_C_ANGLE), 0]]), [len(ca_coords), 1]) bb_coords = np.einsum('noi,ni->no', R.repeat(3, axis=0), bb_coords) + ca_coords.repeat(3, axis=0) bb_atom_types = [t for _ in range(len(ca_coords)) for t in ['N', 'C', 'C']] return bb_coords, bb_atom_types def quaternion_to_rotation_matrix(q): """ x_rot = R x Args: q: (n, 4) Returns: R: (n, 3, 3) """ # Normalize q = q / (q ** 2).sum(1, keepdims=True) ** 0.5 # https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion w, x, y, z = q[:, 0], q[:, 1], q[:, 2], q[:, 3] R = np.stack([ np.stack([1 - 2 * y ** 2 - 2 * z ** 2, 2 * x * y - 2 * z * w, 2 * x * z + 2 * y * w], axis=1), np.stack([2 * x * y + 2 * z * w, 1 - 2 * x ** 2 - 2 * z ** 2, 2 * y * z - 2 * x * w], axis=1), np.stack([2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x ** 2 - 2 * y ** 2], axis=1) ], axis=1) return R def rotation_matrix_to_quaternion(R): """ https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion Args: R: (n, 3, 3) Returns: q: (n, 4) """ t = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2] r = np.sqrt(1 + t) w = 0.5 * r x = np.sign(R[:, 2, 1] - R[:, 1, 2]) * np.abs( 0.5 * np.sqrt(1 + R[:, 0, 0] - R[:, 1, 1] - R[:, 2, 2])) y = np.sign(R[:, 0, 2] - R[:, 2, 0]) * np.abs( 0.5 * np.sqrt(1 - R[:, 0, 0] + R[:, 1, 1] - R[:, 2, 2])) z = np.sign(R[:, 1, 0] - R[:, 0, 1]) * np.abs( 0.5 * np.sqrt(1 - R[:, 0, 0] - R[:, 1, 1] + R[:, 2, 2])) return np.stack((w, x, y, z), axis=1)