File size: 15,017 Bytes
6e7d4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import math
import torch


def _batch_trace(m):
    return torch.einsum('...ii', m)


def regularize(point, eps=1e-6):
    """
    Norm of the rotation vector should be between 0 and pi.
    Inverts the direction of the rotation axis if the value is between pi and 2 pi.
    Args:
        point, (n, 3)
    Returns:
        regularized point, (n, 3)
    """
    theta = torch.linalg.norm(point, axis=-1)

    # angle in [0, 2pi)
    theta_wrapped = theta % (2 * math.pi)
    inv_mask = theta_wrapped > math.pi

    # angle in [0, pi) & invert
    theta_wrapped[inv_mask] = -1 * (2 * math.pi - theta_wrapped[inv_mask])

    # apply
    theta = torch.clamp(theta, min=eps)
    point = point * (theta_wrapped / theta).unsqueeze(-1)
    assert not point.isnan().any()
    return point


def random_uniform(n_samples, device=None):
    """
    Follow geomstats implementation:
    https://geomstats.github.io/_modules/geomstats/geometry/special_orthogonal.html

    Args:
        n_samples: int
    Returns:
        rotation vectors, (n, 3)
    """
    random_point = (torch.rand(n_samples, 3, device=device) * 2 - 1) * math.pi
    random_point = regularize(random_point)

    return random_point


def hat(rot_vec):
    """
    Maps R^3 vector to a skew-symmetric matrix r (i.e. r \in R^{3x3} and r^T = -r).
    Since we have the identity rv = rot_vec x v for all v \in R^3, this is
    identical to a cross-product-matrix representation of rot_vec.
    rot_vec x v = hat(rot_vec)^T v
    See also:
    https://en.wikipedia.org/wiki/Cross_product#Conversion_to_matrix_multiplication
    https://en.wikipedia.org/wiki/Hat_notation#Cross_product
    Args:
        rot_vec: (n, 3)
    Returns:
        skew-symmetric matrices (n, 3, 3)
    """
    basis = torch.tensor([
        [[0., 0., 0.], [0., 0., -1.], [0., 1., 0.]],
        [[0., 0., 1.], [0., 0., 0.], [-1., 0., 0.]],
        [[0., -1., 0.], [1., 0., 0.], [0., 0., 0.]]
    ], device=rot_vec.device)
    # basis = torch.tensor([
    #     [[0., 0., 0.], [0., 0., 1.], [0., -1., 0.]],
    #     [[0., 0., -1.], [0., 0., 0.], [1., 0., 0.]],
    #     [[0., 1., 0.], [-1., 0., 0.], [0., 0., 0.]]
    # ], device=rot_vec.device)

    return torch.einsum('...i,ijk->...jk', rot_vec, basis)


def inv_hat(skew_mat):
    """
    Inverse of hat operation
    Args:
        skew_mat: skew-symmetric matrices (n, 3, 3)
    Returns:
        rotation vectors, (n, 3)
    """

    assert torch.allclose(-skew_mat, skew_mat.transpose(-2, -1), atol=1e-4), \
        f"Input not skew-symmetric (err={(-skew_mat - skew_mat.transpose(-2, -1)).abs().max():.4g})"

    # vec = torch.stack([
    #     skew_mat[:, 1, 2],
    #     skew_mat[:, 2, 1],
    #     skew_mat[:, 0, 1]
    # ], dim=1)

    vec = torch.stack([
        skew_mat[:, 2, 1],
        skew_mat[:, 0, 2],
        skew_mat[:, 1, 0]
    ], dim=1)

    return vec


def matrix_from_rotation_vector(axis_angle, eps=1e-6):
    """
    Args:
        axis_angle: (n, 3)
    Returns:
        rotation matrices, (n, 3, 3)
    """

    axis_angle = regularize(axis_angle)
    angle = axis_angle.norm(dim=-1)
    _norm = torch.clamp(angle, min=eps).unsqueeze(-1)
    skew_mat = hat(axis_angle / _norm)

    # https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Matrix_notation
    _id = torch.eye(3, device=axis_angle.device).unsqueeze(0)
    rot_mat = _id + \
              torch.sin(angle)[:, None, None] * skew_mat + \
              (1 - torch.cos(angle))[:, None, None] * torch.bmm(skew_mat, skew_mat)

    return rot_mat


class safe_acos(torch.autograd.Function):
    """
    Implementation of arccos that avoids NaN in backward pass.
    https://github.com/pytorch/pytorch/issues/8069#issuecomment-2041223872
    """
    EPS = 1e-4
    @classmethod
    def d_acos_dx(cls, x):
        x = torch.clamp(x, min=-1. + cls.EPS, max=1. - cls.EPS)
        return -1.0 / (1 - x**2).sqrt()

    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        return input.acos()

    @staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_tensors
        return grad_output * safe_acos.d_acos_dx(input)


def rotation_vector_from_matrix(rot_mat, approx=1e-4):
    """
    Args:
        rot_mat: (n, 3, 3)
        approx: float, minimum angle below which an approximation will be used
            for numerical stability
    Returns:
        rotation vector, (n, 3)
    """

    # https://en.wikipedia.org/wiki/Rotation_matrix#Conversion_from_rotation_matrix_to_axis%E2%80%93angle
    # https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Log_map_from_SO(3)_to_%F0%9D%94%B0%F0%9D%94%AC(3)

    # determine axis
    skew_mat = rot_mat - rot_mat.transpose(-2, -1)

    # determine the angle
    cos_angle = 0.5 * (_batch_trace(rot_mat) - 1)
    # arccos is only defined between -1 and 1
    assert torch.all(cos_angle.abs() <= 1 + 1e-6)
    cos_angle = torch.clamp(cos_angle, min=-1., max=1.)
    # abs_angle = torch.arccos(cos_angle)
    abs_angle = safe_acos.apply(cos_angle)

    # avoid numerical instability; use sin(x) \approx x for small x
    close_to_0 = abs_angle < approx
    _fac = torch.empty_like(abs_angle)
    _fac[close_to_0] = 0.5
    _fac[~close_to_0] = 0.5 * abs_angle[~close_to_0] / torch.sin(abs_angle[~close_to_0])

    axis_angle = inv_hat(_fac[:, None, None] * skew_mat)
    return regularize(axis_angle)


def get_jacobian(point, left=True, inverse=False, eps=1e-4):

    # # From Geomstats: https://geomstats.github.io/_modules/geomstats/geometry/special_orthogonal.html
    # jacobian = so3_vector.jacobian_translation(point, left)
    #
    # if inverse:
    #     jacobian = torch.linalg.inv(jacobian)

    # Right Jacobian defined as J_r(theta) = \partial exp([theta]_x) / \partial theta
    # https://math.stackexchange.com/questions/301533/jacobian-involving-so3-exponential-map-logr-expm
    # Source:
    # Chirikjian, Gregory S. Stochastic models, information theory, and Lie
    # groups, volume 2: Analytic methods and modern applications. Vol. 2.
    # Springer Science & Business Media, 2011. (page 40)
    # NOTE: the definitions of 'inverse' and 'left' in the book are the opposite
    #  of their meanings in Geomstats, whose functionality we're mimicking here.
    #  This explains the differences in the equations.
    angle_squared = point.square().sum(-1)
    angle = angle_squared.sqrt()
    skew_mat = hat(point)

    assert torch.all(angle <= math.pi)
    close_to_0 = angle < eps
    close_to_pi = (math.pi - angle) < eps

    angle = angle[:, None, None]
    angle_squared = angle_squared[:, None, None]

    if inverse:
        # _jacobian = torch.eye(3, device=point.device).unsqueeze(0) + \
        #            (1 - torch.cos(angle)) / angle_squared * skew_mat + \
        #            (angle - torch.sin(angle)) / angle ** 3 * (skew_mat @ skew_mat)

        _term1 = torch.empty_like(angle)
        _term1[close_to_0] = 0.5  # approximate with value at zero
        _term1[~close_to_0] = (1 - torch.cos(angle)) / angle_squared

        _term2 = torch.empty_like(angle)
        _term2[close_to_0] = 1 / 6  # approximate with value at zero
        _term2[~close_to_0] = (angle - torch.sin(angle)) / angle ** 3

        jacobian = torch.eye(3, device=point.device).unsqueeze(0) + \
                   _term1 * skew_mat + _term2 * (skew_mat @ skew_mat)
        # assert torch.allclose(jacobian, _jacobian, atol=1e-4)
    else:
        # _jacobian = torch.eye(3, device=point.device).unsqueeze(0) - 0.5 * skew_mat + \
        #            (1 / angle_squared - (1 + torch.cos(angle)) / (2 * angle * torch.sin(angle))) * (skew_mat @ skew_mat)

        _term1 = torch.empty_like(angle)
        _term1[close_to_0] = 1 / 12  # approximate with value at zero
        _term1[close_to_pi] = 1 / math.pi**2  # approximate with value at pi
        default = ~close_to_0 & ~close_to_pi
        _term1[default] = 1 / angle_squared[default] - \
                        (1 + torch.cos(angle[default])) / (2 * angle[default] * torch.sin(angle[default]))

        jacobian = torch.eye(3, device=point.device).unsqueeze(0) - \
                    0.5 * skew_mat + _term1 * (skew_mat @ skew_mat)
        # assert torch.allclose(jacobian, _jacobian, atol=1e-4)

    if left:
        jacobian = jacobian.transpose(-2, -1)

    return jacobian


def compose_rotations(rot_vec_1, rot_vec_2):
    rot_mat_1 = matrix_from_rotation_vector(rot_vec_1)
    rot_mat_2 = matrix_from_rotation_vector(rot_vec_2)
    rot_mat_out = torch.bmm(rot_mat_1, rot_mat_2)
    return rotation_vector_from_matrix(rot_mat_out)


def exp(tangent):
    """
    Exponential map at identity.
    Args:
        tangent: vector on the tangent space, (n, 3)
    Returns:
        rotation vector on the manifold, (n, 3)
    """
    # rotations are already represented by rotation vectors
    exp_from_identity = regularize(tangent)
    return exp_from_identity


def exp_not_from_identity(tangent_vec, base_point):
    """
    Exponential map at base point.
    Args:
        tangent_vec: vector on the tangent plane, (n, 3)
        base_point: base point on the manifold, (n, 3)
    Returns:
        new point on the manifold, (n, 3)
    """

    tangent_vec = regularize(tangent_vec)
    base_point = regularize(base_point)

    # Lie algebra is the tangent space at the identity element of a Lie group
    # -> to identity
    jacobian = get_jacobian(base_point, left=True, inverse=True)
    tangent_vec_at_id = torch.einsum("...ij,...j->...i", jacobian, tangent_vec)

    # exponential map from identity
    exp_from_identity = exp(tangent_vec_at_id)

    # -> back to base point
    return compose_rotations(base_point, exp_from_identity)


def log(rot_vec, as_skew=False):
    """
    Logarithm map from tangent space at the identity.
    Args:
        rot_vec: point on the manifold, (n, 3)
    Returns:
        vector on the tangent space, (n, 3)
    """
    # rotations are already represented by rotation vectors
    # log_from_id = regularize(rot_vec)
    log_from_id = rot_vec
    if as_skew:
        log_from_id = hat(log_from_id)
    return log_from_id


def log_not_from_identity(point, base_point):
    """
    Logarithm map of point from base point.
    Args:
        point: point on the manifold, (n, 3)
        base_point: base point on the manifold, (n, 3)
    Returns:
        vector on the tangent plane, (n, 3)
    """
    point = regularize(point)
    base_point = regularize(base_point)

    inv_base_point = -1 * base_point

    point_near_id = compose_rotations(inv_base_point, point)

    # logarithm map from identity
    log_from_id = log(point_near_id)

    jacobian = get_jacobian(base_point, inverse=False)
    tangent_vec_at_id = torch.einsum("...ij,...j->...i", jacobian, log_from_id)

    return tangent_vec_at_id


if __name__ == "__main__":

    import os
    os.environ['GEOMSTATS_BACKEND'] = "pytorch"
    import scipy.optimize  # does not seem to be imported correctly when just loading geomstats
    default_dtype = torch.get_default_dtype()
    from geomstats.geometry.special_orthogonal import SpecialOrthogonal
    torch.set_default_dtype(default_dtype)  # Geomstats changes default type when imported

    so3_vector = SpecialOrthogonal(n=3, point_type="vector")

    # decorator
    if torch.__version__ >= '2.0.0':
        GEOMSTATS_DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

        def geomstats_tensor_type(func):
            def inner(*args, **kwargs):
                with torch.device(GEOMSTATS_DEVICE):
                    out = func(*args, **kwargs)
                return out

            return inner
    else:
        GEOMSTATS_TENSOR_TYPE = 'torch.cuda.FloatTensor' if torch.cuda.is_available() else 'torch.FloatTensor'

        # GEOMSTATS_TENSOR_TYPE = 'torch.cuda.DoubleTensor' if torch.cuda.is_available() else 'torch.DoubleTensor'
        def geomstats_tensor_type(func):
            def inner(*args, **kwargs):
                # tensor_type_before = TODO
                torch.set_default_tensor_type(GEOMSTATS_TENSOR_TYPE)
                out = func(*args, **kwargs)
                # torch.set_default_tensor_type(tensor_type_before)
                torch.set_default_tensor_type('torch.FloatTensor')
                return out

            return inner

    @geomstats_tensor_type
    def gs_matrix_from_rotation_vector(*args, **kwargs):
        return so3_vector.matrix_from_rotation_vector(*args, **kwargs)

    @geomstats_tensor_type
    def gs_rotation_vector_from_matrix(*args, **kwargs):
        return so3_vector.rotation_vector_from_matrix(*args, **kwargs)

    @geomstats_tensor_type
    def gs_exp_not_from_identity(*args, **kwargs):
        return so3_vector.exp_not_from_identity(*args, **kwargs)

    @geomstats_tensor_type
    def gs_log_not_from_identity(*args, **kwargs):
        # norm of the rotation vector will be between 0 and pi
        return so3_vector.log_not_from_identity(*args, **kwargs)

    @geomstats_tensor_type
    def compose(*args, **kwargs):
        return so3_vector.compose(*args, **kwargs)

    @geomstats_tensor_type
    def inverse(*args, **kwargs):
        return so3_vector.inverse(*args, **kwargs)

    @geomstats_tensor_type
    def gs_random_uniform(*args, **kwargs):
        return so3_vector.random_uniform(*args, **kwargs)


    #############
    # RUN TESTS #
    #############

    n = 16
    device = 'cuda' if torch.cuda.is_available() else None

    ### regularize ###

    # vec = (torch.rand(n, 3) * 2 - 1) * math.pi
    vec = (torch.rand(n, 3) * 4 - 2) * math.pi
    axis_angle = regularize(vec)
    assert torch.all(torch.cross(vec, axis_angle).norm(dim=-1) < 1e-5), "not all vectors collinear"
    assert torch.all(axis_angle.norm(dim=-1) < math.pi) & torch.all(axis_angle.norm(dim=-1) >= 0), "norm not between 0 and pi"


    ### matrix_from_rotation_vector ###

    rot_vec = random_uniform(16, device=device)
    assert torch.allclose(matrix_from_rotation_vector(rot_vec),
                          gs_matrix_from_rotation_vector(rot_vec), atol=1e-06)


    ### rotation_vector_from_matrix ###

    rot_vec = random_uniform(16, device=device)
    rot_mat = matrix_from_rotation_vector(rot_vec)
    assert torch.allclose(rotation_vector_from_matrix(rot_mat),
                          gs_rotation_vector_from_matrix(rot_mat), atol=1e-05)


    ### exp_not_from_identity ###

    tangent_vec = random_uniform(16, device=device)
    base_pt = random_uniform(16, device=device)
    my_val = exp_not_from_identity(tangent_vec, base_pt)
    gs_val = gs_exp_not_from_identity(tangent_vec, base_pt)
    assert torch.allclose(my_val, gs_val, atol=1e-03), (my_val - gs_val).abs().max()


    ### log_not_from_identity ###

    pt = random_uniform(16, device=device)
    base_pt = random_uniform(16, device=device)
    my_val = log_not_from_identity(pt, base_pt)
    gs_val = gs_log_not_from_identity(pt, base_pt)
    assert torch.allclose(my_val, gs_val, atol=1e-03), (my_val - gs_val).abs().max()


    print("All tests successful!")