File size: 12,038 Bytes
6e7d4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from typing import Optional
from pathlib import Path
from contextlib import nullcontext

import torch
import torch.nn.functional as F
from torch_scatter import scatter_mean

from src.constants import atom_encoder, bond_encoder
from src.model.lightning import DrugFlow, set_default
from src.data.dataset import ProcessedLigandPocketDataset, DPODataset
from src.data.data_utils import AppendVirtualNodesInCoM, Residues, center_data

class DPO(DrugFlow):
    def __init__(self, dpo_mode, ref_checkpoint_p, **kwargs):
        super(DPO, self).__init__(**kwargs)
        self.dpo_mode = dpo_mode
        self.dpo_beta = kwargs['loss_params'].dpo_beta if 'dpo_beta' in kwargs['loss_params'] else 100.0
        self.dpo_beta_schedule = kwargs['loss_params'].dpo_beta_schedule if 'dpo_beta_schedule' in kwargs['loss_params'] else 't'
        self.clamp_dpo = kwargs['loss_params'].clamp_dpo if 'clamp_dpo' in kwargs['loss_params'] else True
        self.dpo_lambda_dpo = kwargs['loss_params'].dpo_lambda_dpo if 'dpo_lambda_dpo' in kwargs['loss_params'] else 1
        self.dpo_lambda_w = kwargs['loss_params'].dpo_lambda_w if 'dpo_lambda_w' in kwargs['loss_params'] else 1
        self.dpo_lambda_l = kwargs['loss_params'].dpo_lambda_l if 'dpo_lambda_l' in kwargs['loss_params'] else 0.2
        self.dpo_lambda_h = kwargs['loss_params'].dpo_lambda_h if 'dpo_lambda_h' in kwargs['loss_params'] else kwargs['loss_params'].lambda_h
        self.dpo_lambda_e = kwargs['loss_params'].dpo_lambda_e if 'dpo_lambda_e' in kwargs['loss_params'] else kwargs['loss_params'].lambda_e
        self.ref_dynamics = self.init_model(kwargs['predictor_params'])
        state_dict = torch.load(ref_checkpoint_p)['state_dict']
        self.ref_dynamics.load_state_dict({k.replace('dynamics.',''): v for k, v in state_dict.items() if k.startswith('dynamics.')})
        print(f'Loaded reference model from {ref_checkpoint_p}')
        # initializing model params with ref model params
        self.dynamics.load_state_dict(self.ref_dynamics.state_dict())

    def get_dataset(self, stage, pocket_transform=None):

        # when sampling we don't append virtual nodes as we might need access to the ground truth size
        if self.virtual_nodes and stage == 'train':
            ligand_transform = AppendVirtualNodesInCoM(
                atom_encoder, bond_encoder, add_min=self.add_virtual_min, add_max=self.add_virtual_max)
        else:
            ligand_transform = None

        # we want to know if something goes wrong on the validation or test set
        catch_errors = stage == 'train'

        if self.sharded_dataset:
            raise NotImplementedError('Sharded dataset not implemented for DPO')

        if self.sample_from_clusters and stage == 'train':  # val/test should be deterministic
            raise NotImplementedError('Sampling from clusters not implemented for DPO')

        if stage == 'train':
            return DPODataset(
                Path(self.datadir, 'train.pt'),
                ligand_transform=None,
                pocket_transform=pocket_transform,
                catch_errors=True,
            )
        else:
            return ProcessedLigandPocketDataset(
                pt_path=Path(self.datadir, 'val.pt' if self.debug else f'{stage}.pt'),
                ligand_transform=ligand_transform,
                pocket_transform=pocket_transform,
                catch_errors=catch_errors,
            )


    def training_step(self, data, *args):
        ligand_w, ligand_l, pocket = data['ligand'], data['ligand_l'], data['pocket']
        loss, info = self.compute_dpo_loss(pocket, ligand_w=ligand_w, ligand_l=ligand_l, return_info=True)

        if torch.isnan(loss):
            print(f'For ligand pair , loss is NaN at epoch {self.current_epoch}. Info: {info}')
        
        log_dict = {k: v for k, v in info.items() if isinstance(v, float) or torch.numel(v) <= 1}
        self.log_metrics({'loss': loss, **log_dict}, 'train', batch_size=len(ligand_w['size']))

        out = {'loss': loss, **info}
        self.training_step_outputs.append(out)
        return out
    
    def validation_step(self, data, *args):
        return super().validation_step(data, *args)

    def compute_dpo_loss(self, pocket, ligand_w, ligand_l, return_info=False):
        t = torch.rand(ligand_w['size'].size(0), device=ligand_w['x'].device).unsqueeze(-1)

        if self.dpo_beta_schedule == 't':
            # from https://arxiv.org/pdf/2407.13981
            beta_t = (self.dpo_beta * t).squeeze()
        elif self.dpo_beta_schedule == 'const':
            beta_t = self.dpo_beta
        else:
            raise ValueError(f'Unknown DPO beta schedule: {self.dpo_beta_schedule}')

        loss_dict_w = self.compute_loss_single_pair(ligand_w, pocket, t)
        loss_dict_l = self.compute_loss_single_pair(ligand_l, pocket, t)
        info = {
            'loss_x_w': loss_dict_w['theta']['x'].mean().item(),
            'loss_h_w': loss_dict_w['theta']['h'].mean().item(),
            'loss_e_w': loss_dict_w['theta']['e'].mean().item(),
            'loss_x_l': loss_dict_l['theta']['x'].mean().item(),
            'loss_h_l': loss_dict_l['theta']['h'].mean().item(),
            'loss_e_l': loss_dict_l['theta']['e'].mean().item(),
        }
        if self.dpo_mode == 'single_dpo_comp':
            loss_w_theta = (
                loss_dict_w['theta']['x'] +
                self.dpo_lambda_h * loss_dict_w['theta']['h'] +
                self.dpo_lambda_e * loss_dict_w['theta']['e']
            )
            loss_w_ref = (
                loss_dict_w['ref']['x'] +
                self.dpo_lambda_h * loss_dict_w['ref']['h'] +
                self.dpo_lambda_e * loss_dict_w['ref']['e']
            )
            loss_l_theta = (
                loss_dict_l['theta']['x'] +
                self.dpo_lambda_h * loss_dict_l['theta']['h'] +
                self.dpo_lambda_e * loss_dict_l['theta']['e']
            )
            loss_l_ref = (
                loss_dict_l['ref']['x'] +
                self.dpo_lambda_h * loss_dict_l['ref']['h'] +
                self.dpo_lambda_e * loss_dict_l['ref']['e']
            )
            diff_w = loss_w_theta - loss_w_ref
            diff_l = loss_l_theta - loss_l_ref
            info['diff_w'] = diff_w.mean().item()
            info['diff_l'] = diff_l.mean().item()
            # print(diff)
            diff = -1 * beta_t * (diff_w - diff_l)
            loss = -1 * F.logsigmoid(diff)
        elif self.dpo_mode == 'single_dpo_comp_v3':
            diff_w_x = loss_dict_w['theta']['x'] - loss_dict_w['ref']['x']
            diff_w_h = loss_dict_w['theta']['h'] - loss_dict_w['ref']['h']
            diff_w_e = loss_dict_w['theta']['e'] - loss_dict_w['ref']['e']
            diff_l_x = loss_dict_l['theta']['x'] - loss_dict_l['ref']['x']
            diff_l_h = loss_dict_l['theta']['h'] - loss_dict_l['ref']['h']
            diff_l_e = loss_dict_l['theta']['e'] - loss_dict_l['ref']['e']
            info['diff_w_x'] = diff_w_x.mean().item()
            info['diff_w_h'] = diff_w_h.mean().item()
            info['diff_w_e'] = diff_w_e.mean().item()
            info['diff_l_x'] = diff_l_x.mean().item()
            info['diff_l_h'] = diff_l_h.mean().item()
            info['diff_l_e'] = diff_l_e.mean().item()
            
            # not used, just for logging
            _diff_w = diff_w_x + self.dpo_lambda_h * diff_w_h + self.dpo_lambda_e * diff_w_e
            _diff_l = diff_l_x + self.dpo_lambda_h * diff_l_h + self.dpo_lambda_e * diff_l_e
            info['diff_w'] = _diff_w.mean().item()
            info['diff_l'] = _diff_l.mean().item()

            diff_x = diff_w_x - diff_l_x
            diff_h = diff_w_h - diff_l_h
            diff_e = diff_w_e - diff_l_e
            info['diff_x'] = diff_x.mean().item()
            info['diff_h'] = diff_h.mean().item()
            info['diff_e'] = diff_e.mean().item()

            diff = -1 * beta_t * (diff_x + self.dpo_lambda_h * diff_h + self.dpo_lambda_e * diff_e)
            if self.clamp_dpo:
                diff = diff.clamp(-10, 10)
            info['dpo_arg_min'] = diff.min().item()
            info['dpo_arg_max'] = diff.max().item()
            info['dpo_arg_mean'] = diff.mean().item()
            dpo_loss = -1 * self.dpo_lambda_dpo * F.logsigmoid(diff)
            info['dpo_loss'] = dpo_loss.mean().item()
            
            loss_w_theta_reg = (
                loss_dict_w['theta']['x'] +
                self.lambda_h * loss_dict_w['theta']['h'] +
                self.lambda_e * loss_dict_w['theta']['e']
            )
            info['loss_w_theta_reg'] = loss_w_theta_reg.mean().item()
            loss_l_theta_reg = (
                loss_dict_l['theta']['x'] +
                self.lambda_h * loss_dict_l['theta']['h'] +
                self.lambda_e * loss_dict_l['theta']['e']
            )
            info['loss_l_theta_reg'] = loss_l_theta_reg.mean().item()
            dpo_reg = self.dpo_lambda_w * loss_w_theta_reg + \
                      self.dpo_lambda_l * loss_l_theta_reg
            info['dpo_reg'] = dpo_reg.mean().item()
            loss = dpo_loss + dpo_reg
        else:
            raise ValueError(f'Unknown DPO mode: {self.dpo_mode}')

        if self.timestep_weights is not None:
            w_t = self.timestep_weights(t).squeeze()
            loss = w_t * loss

        loss = loss.mean(0)
        
        print(f'Loss is {loss}, info is {info}')

        return (loss, info) if return_info else loss

    def compute_loss_single_pair(self, ligand, pocket, t):
        pocket = Residues(**pocket)

        # Center sample
        ligand, pocket = center_data(ligand, pocket)
        pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)

        # Noise
        z0_x = self.module_x.sample_z0(pocket_com, ligand['mask'])
        z0_h = self.module_h.sample_z0(ligand['mask'])
        z0_e = self.module_e.sample_z0(ligand['bond_mask'])
        zt_x = self.module_x.sample_zt(z0_x, ligand['x'], t, ligand['mask'])
        zt_h = self.module_h.sample_zt(z0_h, ligand['one_hot'], t, ligand['mask'])
        zt_e = self.module_e.sample_zt(z0_e, ligand['bond_one_hot'], t, ligand['bond_mask'])

        # Predict denoising
        sc_transform = self.get_sc_transform_fn(None, zt_x, t, None, ligand['mask'], pocket)

        pred_ligand, _ = self.dynamics(
            zt_x, zt_h, ligand['mask'], pocket, t,
            bonds_ligand=(ligand['bonds'], zt_e),
            sc_transform=sc_transform
        )

        # Reference model
        with torch.no_grad():
            ref_pred_ligand, _ = self.ref_dynamics(
                zt_x, zt_h, ligand['mask'], pocket, t,
                bonds_ligand=(ligand['bonds'], zt_e),
                sc_transform=sc_transform
            )

        # Compute L2 loss
        loss_x = self.module_x.compute_loss(pred_ligand['vel'], z0_x, ligand['x'], t, ligand['mask'], reduce=self.loss_reduce)
        ref_loss_x = self.module_x.compute_loss(ref_pred_ligand['vel'], z0_x, ligand['x'], t, ligand['mask'], reduce=self.loss_reduce)

        t_next = torch.clamp(t + self.train_step_size, max=1.0)

        loss_h = self.module_h.compute_loss(pred_ligand['logits_h'], zt_h, ligand['one_hot'], ligand['mask'], t, t_next, reduce=self.loss_reduce)
        ref_loss_h = self.module_h.compute_loss(ref_pred_ligand['logits_h'], zt_h, ligand['one_hot'], ligand['mask'], t, t_next, reduce=self.loss_reduce)
        loss_e = self.module_e.compute_loss(pred_ligand['logits_e'], zt_e, ligand['bond_one_hot'], ligand['bond_mask'], t, t_next, reduce=self.loss_reduce)
        ref_loss_e = self.module_e.compute_loss(ref_pred_ligand['logits_e'], zt_e, ligand['bond_one_hot'], ligand['bond_mask'], t, t_next, reduce=self.loss_reduce)

        return {
            'theta': {
                'x': loss_x,
                'h': loss_h,
                'e': loss_e,
            },
            'ref': {
                'x': ref_loss_x,
                'h': ref_loss_h,
                'e': ref_loss_e,
            }
        }