File size: 15,588 Bytes
6e7d4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
from abc import ABC
from abc import abstractmethod
import math
import torch
from torch_scatter import scatter_mean, scatter_add
import src.data.so3_utils as so3
class ICFM(ABC):
"""
Abstract base class for all Independent-coupling CFM classes.
Defines a common interface.
Notation:
- zt is the intermediate representation at time step t \in [0, 1]
- zs is the noised representation at time step s < t
# TODO: add interpolation schedule (not necessrily linear)
"""
def __init__(self, sigma):
self.sigma = sigma
@abstractmethod
def sample_zt(self, z0, z1, t, *args, **kwargs):
""" TODO. """
pass
@abstractmethod
def sample_zt_given_zs(self, *args, **kwargs):
""" Perform update, typically using an explicit Euler step. """
pass
@abstractmethod
def sample_z0(self, *args, **kwargs):
""" Prior. """
pass
@abstractmethod
def compute_loss(self, pred, z0, z1, *args, **kwargs):
""" Compute loss per sample. """
pass
class CoordICFM(ICFM):
def __init__(self, sigma):
self.dim = 3
self.scale = 2.7
super().__init__(sigma)
def sample_zt(self, z0, z1, t, batch_mask):
zt = t[batch_mask] * z1 + (1 - t)[batch_mask] * z0
# zt = self.sigma * z0 + t[batch_mask] * z1 + (1 - t)[batch_mask] * z0 # TODO: do we have to compute Psi?
return zt
def sample_zt_given_zs(self, zs, pred, s, t, batch_mask):
""" Perform an explicit Euler step. """
step_size = t - s
zt = zs + step_size[batch_mask] * self.scale * pred
return zt
def sample_z0(self, com, batch_mask):
""" Prior. """
z0 = torch.randn((len(batch_mask), self.dim), device=batch_mask.device)
# Move center of mass
z0 = z0 + com[batch_mask]
return z0
def reduce_loss(self, loss, batch_mask, reduce):
assert reduce in {'mean', 'sum', 'none'}
if reduce == 'mean':
loss = scatter_mean(loss / self.dim, batch_mask, dim=0)
elif reduce == 'sum':
loss = scatter_add(loss, batch_mask, dim=0)
return loss
def compute_loss(self, pred, z0, z1, t, batch_mask, reduce='mean'):
""" Compute loss per sample. """
loss = torch.sum((pred - (z1 - z0) / self.scale) ** 2, dim=-1)
return self.reduce_loss(loss, batch_mask, reduce)
def get_z1_given_zt_and_pred(self, zt, pred, z0, t, batch_mask):
""" Make a best guess on the final state z1 given the current state and
the network prediction. """
# z1 = z0 + pred
z1 = zt + (1 - t)[batch_mask] * pred
return z1
class TorusICFM(ICFM):
"""
Following:
Chen, Ricky TQ, and Yaron Lipman.
"Riemannian flow matching on general geometries."
arXiv preprint arXiv:2302.03660 (2023).
"""
def __init__(self, sigma, dim, scheduler_args=None):
super().__init__(sigma)
self.dim = dim
# Scheduler that determines the rate at which the geodesic distance decreases
scheduler_args = scheduler_args or {}
scheduler_args["type"] = scheduler_args.get("type", "linear") # default
scheduler_args["learn_scaled"] = scheduler_args.get("learn_scaled", False) # default
# linear scheduler: kappa(t) = 1-t (default)
if scheduler_args["type"] == "linear":
# equivalent to: 1 - kappa(t)
self.flow_scaling = lambda t: t
# equivalent to: -1 * d/dt kappa(t)
self.velocity_scaling = lambda t: torch.ones_like(t)
# exponential scheduler: kappa(t) = exp(-c*t)
elif scheduler_args["type"] == "exponential":
self.c = scheduler_args["c"]
assert self.c > 0
# equivalent to: 1 - kappa(t)
self.flow_scaling = lambda t: 1 - torch.exp(-self.c * t)
# equivalent to: -1 * d/dt kappa(t)
self.velocity_scaling = lambda t: self.c * torch.exp(-self.c * t)
# polynomial scheduler: kappa(t) = (1-t)^k
elif scheduler_args["type"] == "polynomial":
self.k = scheduler_args["k"]
assert self.k > 0
# equivalent to: 1 - kappa(t)
self.flow_scaling = lambda t: 1 - (1 - t)**self.k
# equivalent to: -1 * d/dt kappa(t)
self.velocity_scaling = lambda t: self.k * (1 - t)**(self.k - 1)
else:
raise NotImplementedError(f"Scheduler {scheduler_args['type']} not implemented.")
kappa_interval = self.flow_scaling(torch.tensor([0.0, 1.0]))
if kappa_interval[0] != 0.0 or kappa_interval[1] != 1.0:
print(f"Scheduler should satisfy kappa(0)=1 and kappa(1)=0. Found "
f"interval {kappa_interval.tolist()} instead.")
# determines whether the scaled vector field is learned or the scheduler
# is post-multiplied
self.learn_scaled = scheduler_args["learn_scaled"]
@staticmethod
def wrap(angle):
""" Maps angles to range [-\pi, \pi). """
return ((angle + math.pi) % (2 * math.pi)) - math.pi
def exponential_map(self, x, u):
"""
:param x: point on the manifold
:param u: point on the tangent space
"""
return self.wrap(x + u)
@staticmethod
def logarithm_map(x, y):
"""
:param x, y: points on the manifold
"""
return torch.atan2(torch.sin(y - x), torch.cos(y - x))
def sample_zt(self, z0, z1, t, batch_mask):
""" expressed in terms of exponential and logarithm maps """
# apply logarithm map
# zt_tangent = t[batch_mask] * self.logarithm_map(z0, z1)
zt_tangent = self.flow_scaling(t)[batch_mask] * self.logarithm_map(z0, z1)
# apply exponential map
return self.exponential_map(z0, zt_tangent)
def get_z1_given_zt_and_pred(self, zt, pred, z0, t, batch_mask):
""" Make a best guess on the final state z1 given the current state and
the network prediction. """
# estimate z1_tangent based on zt and pred only
if self.learn_scaled:
pred = pred / torch.clamp(self.velocity_scaling(t), min=1e-3)[batch_mask]
z1_tangent = (1 - t)[batch_mask] * pred
# exponential map
return self.exponential_map(zt, z1_tangent)
def sample_zt_given_zs(self, zs, pred, s, t, batch_mask):
""" Perform update, typically using an explicit Euler step. """
step_size = t - s
zt_tangent = step_size[batch_mask] * pred
if not self.learn_scaled:
zt_tangent = self.velocity_scaling(t)[batch_mask] * zt_tangent
# exponential map
return self.exponential_map(zs, zt_tangent)
def sample_z0(self, batch_mask):
""" Prior. """
# Uniform distribution
z0 = torch.rand((len(batch_mask), self.dim), device=batch_mask.device)
return 2 * math.pi * z0 - math.pi
def compute_loss(self, pred, z0, z1, zt, t, batch_mask, reduce='mean'):
""" Compute loss per sample. """
assert reduce in {'mean', 'sum', 'none'}
mask = ~torch.isnan(z1)
z1 = torch.nan_to_num(z1, nan=0.0)
zt_dot = self.logarithm_map(z0, z1)
if self.learn_scaled:
# NOTE: potentially requires output magnitude to vary substantially
zt_dot = self.velocity_scaling(t)[batch_mask] * zt_dot
loss = mask * (pred - zt_dot) ** 2
loss = torch.sum(loss, dim=-1)
if reduce == 'mean':
denom = mask.sum(dim=-1) + 1e-6
loss = scatter_mean(loss / denom, batch_mask, dim=0)
elif reduce == 'sum':
loss = scatter_add(loss, batch_mask, dim=0)
return loss
class SO3ICFM(ICFM):
"""
All rotations are assumed to be in axis-angle format.
Mostly following descriptions from the FoldFlow paper:
https://openreview.net/forum?id=kJFIH23hXb
See also:
https://geomstats.github.io/_modules/geomstats/geometry/special_orthogonal.html#SpecialOrthogonal
https://geomstats.github.io/_modules/geomstats/geometry/lie_group.html#LieGroup
"""
def __init__(self, sigma):
super().__init__(sigma)
def exponential_map(self, base, tangent):
"""
Args:
base: base point (rotation vector) on the manifold
tangent: point in tangent space at identity
Returns:
rotation vector on the manifold
"""
# return so3.exp_not_from_identity(tangent, base_point=base)
return so3.compose_rotations(base, so3.exp(tangent))
def logarithm_map(self, base, r):
"""
Args:
base: base point (rotation vector) on the manifold
r: rotation vector on the manifold
Return:
point in tangent space at identity
"""
# return so3.log_not_from_identity(r, base_point=base)
return so3.log(so3.compose_rotations(-base, r))
def sample_zt(self, z0, z1, t, batch_mask):
"""
Expressed in terms of exponential and logarithm maps.
Corresponds to SLERP interpolation: R(t) = R1 exp( t * log(R1^T R2) )
(see https://lucaballan.altervista.org/pdfs/IK.pdf, slide 16)
"""
# apply logarithm map
zt_tangent = t[batch_mask] * self.logarithm_map(z0, z1)
# apply exponential map
return self.exponential_map(z0, zt_tangent)
def get_z1_given_zt_and_pred(self, zt, pred, z0, t, batch_mask):
""" Make a best guess on the final state z1 given the current state and
the network prediction. """
# estimate z1_tangent based on zt and pred only
z1_tangent = (1 - t)[batch_mask] * pred
# exponential map
return self.exponential_map(zt, z1_tangent)
def sample_zt_given_zs(self, zs, pred, s, t, batch_mask):
""" Perform update, typically using an explicit Euler step. """
# # parallel transport vector field to lie algebra so3 (at identity)
# # (FoldFlow paper, Algorithm 3, line 8)
# # TODO: is this correct? is it necessary?
# pred = so3.compose(so3.inverse(zs), pred)
step_size = t - s
zt_tangent = step_size[batch_mask] * pred
# exponential map
return self.exponential_map(zs, zt_tangent)
def sample_z0(self, batch_mask):
""" Prior. """
return so3.random_uniform(n_samples=len(batch_mask), device=batch_mask.device)
@staticmethod
def d_R_squared_SO3(rot_vec_1, rot_vec_2):
"""
Squared Riemannian metric on SO(3).
Defined as d(R1, R2) = sqrt(0.5) ||log(R1^T R2)||_F
where R1, R2 are rotation matrices.
The following is equivalent if the difference between the rotations is
expressed as a rotation vector \omega_diff:
d(r1, r2) = ||\omega_diff||_2
-----
With the definition of the Frobenius matrix norm ||A||_F^2 = trace(A^H A):
d^2(R1, R2) = 1/2 ||log(R1^T R2)||_F^2
= 1/2 || hat(R_d) ||_F^2
= 1/2 tr( hat(R_d)^T hat(R_d) )
= 1/2 * 2 * ||\omega||_2^2
"""
# rot_mat_1 = so3.matrix_from_rotation_vector(rot_vec_1)
# rot_mat_2 = so3.matrix_from_rotation_vector(rot_vec_2)
# rot_mat_diff = rot_mat_1.transpose(-2, -1) @ rot_mat_2
# return torch.norm(so3.log(rot_mat_diff, as_skew=True), p='fro', dim=(-2, -1))
diff_rot = so3.compose_rotations(-rot_vec_1, rot_vec_2)
return diff_rot.square().sum(dim=-1)
def compute_loss(self, pred, z0, z1, zt, t, batch_mask, reduce='mean', eps=5e-2):
""" Compute loss per sample. """
assert reduce in {'mean', 'sum', 'none'}
zt_dot = self.logarithm_map(zt, z1) / torch.clamp(1 - t, min=eps)[batch_mask]
# TODO: do I need this?
# pred_at_id = self.logarithm_map(zt, pred) / torch.clamp(1 - t, min=eps)[batch_mask]
loss = torch.sum((pred - zt_dot)**2, dim=-1) # TODO: is this the right loss in SO3?
# loss = self.d_R_squared_SO3(zt_dot, pred)
if reduce == 'mean':
loss = scatter_mean(loss, batch_mask, dim=0)
elif reduce == 'sum':
loss = scatter_add(loss, batch_mask, dim=0)
return loss
#################
# Predicting z1 #
#################
class CoordICFMPredictFinal(CoordICFM):
def __init__(self, sigma):
self.dim = 3
super().__init__(sigma)
def sample_zt_given_zs(self, zs, z1_minus_zs_pred, s, t, batch_mask):
""" Perform an explicit Euler step. """
# step_size = t - s
# zt = zs + step_size[batch_mask] * z1_minus_zs_pred / (1.0 - s)[batch_mask]
# for numerical stability
step_size = (t - s) / (1.0 - s)
assert torch.all(step_size <= 1.0)
# step_size = torch.clamp(step_size, max=1.0)
zt = zs + step_size[batch_mask] * z1_minus_zs_pred
return zt
def compute_loss(self, z1_minus_zt_pred, z0, z1, t, batch_mask, reduce='mean'):
""" Compute loss per sample. """
assert reduce in {'mean', 'sum', 'none'}
t = torch.clamp(t, max=0.9)
zt = self.sample_zt(z0, z1, t, batch_mask)
loss = torch.sum((z1_minus_zt_pred + zt - z1) ** 2, dim=-1) / torch.square(1 - t)[batch_mask].squeeze()
if reduce == 'mean':
loss = scatter_mean(loss / self.dim, batch_mask, dim=0)
elif reduce == 'sum':
loss = scatter_add(loss, batch_mask, dim=0)
return loss
def get_z1_given_zt_and_pred(self, zt, z1_minus_zt_pred, z0, t, batch_mask):
return z1_minus_zt_pred + zt
class TorusICFMPredictFinal(TorusICFM):
"""
Following:
Chen, Ricky TQ, and Yaron Lipman.
"Riemannian flow matching on general geometries."
arXiv preprint arXiv:2302.03660 (2023).
"""
def __init__(self, sigma, dim):
super().__init__(sigma, dim)
def get_z1_given_zt_and_pred(self, zt, z1_tangent_pred, z0, t, batch_mask):
""" Make a best guess on the final state z1 given the current state and
the network prediction. """
# exponential map
return self.exponential_map(zt, z1_tangent_pred)
def sample_zt_given_zs(self, zs, z1_tangent_pred, s, t, batch_mask):
""" Perform update, typically using an explicit Euler step. """
# step_size = t - s
# zt_tangent = step_size[batch_mask] * z1_tangent_pred / (1.0 - s)[batch_mask]
# for numerical stability
step_size = (t - s) / (1.0 - s)
assert torch.all(step_size <= 1.0)
# step_size = torch.clamp(step_size, max=1.0)
zt_tangent = step_size[batch_mask] * z1_tangent_pred
# exponential map
return self.exponential_map(zs, zt_tangent)
def compute_loss(self, z1_tangent_pred, z0, z1, t, batch_mask, reduce='mean'):
""" Compute loss per sample. """
assert reduce in {'mean', 'sum', 'none'}
zt = self.sample_zt(z0, z1, t, batch_mask)
t = torch.clamp(t, max=0.9)
mask = ~torch.isnan(z1)
z1 = torch.nan_to_num(z1, nan=0.0)
loss = mask * (z1_tangent_pred - self.logarithm_map(zt, z1)) ** 2
loss = torch.sum(loss, dim=-1) / torch.square(1 - t)[batch_mask].squeeze()
if reduce == 'mean':
denom = mask.sum(dim=-1) + 1e-6
loss = scatter_mean(loss / denom, batch_mask, dim=0)
elif reduce == 'sum':
loss = scatter_add(loss, batch_mask, dim=0)
return loss
|