File size: 67,148 Bytes
6e7d4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 |
import warnings
import tempfile
from typing import Optional, Union
from time import time
from pathlib import Path
from functools import partial
from itertools import accumulate
from argparse import Namespace
import numpy as np
import pandas as pd
from rdkit import Chem
import torch
from torch.utils.data import DataLoader, SubsetRandomSampler
from torch.distributions.categorical import Categorical
import pytorch_lightning as pl
from torch_scatter import scatter_mean
import src.utils as utils
from src.constants import atom_encoder, atom_decoder, aa_encoder, aa_decoder, \
bond_encoder, bond_decoder, residue_encoder, residue_bond_encoder, \
residue_decoder, residue_bond_decoder, aa_atom_index, aa_atom_mask
from src.data.dataset import ProcessedLigandPocketDataset, ClusteredDataset, get_wds
from src.data import data_utils
from src.data.data_utils import AppendVirtualNodesInCoM, center_data, Residues, TensorDict, randomize_tensors
from src.model.flows import CoordICFM, TorusICFM, CoordICFMPredictFinal, TorusICFMPredictFinal, SO3ICFM
from src.model.markov_bridge import UniformPriorMarkovBridge, MarginalPriorMarkovBridge
from src.model.dynamics import Dynamics
from src.model.dynamics_hetero import DynamicsHetero
from src.model.diffusion_utils import DistributionNodes
from src.model.loss_utils import TimestepWeights, clash_loss
from src.analysis.visualization_utils import pocket_to_rdkit, mols_to_pdbfile
from src.analysis.metrics import MoleculeValidity, CategoricalDistribution, MolecularProperties
from src.data.molecule_builder import build_molecule
from src.data.postprocessing import process_all
from src.sbdd_metrics.metrics import FullEvaluator
from src.sbdd_metrics.evaluation import VALIDITY_METRIC_NAME, aggregated_metrics, collection_metrics
from tqdm import tqdm
# derive additional constants
aa_atom_mask_tensor = torch.tensor([aa_atom_mask[aa] for aa in aa_decoder])
aa_atom_decoder = {aa: {v: k for k, v in aa_atom_index[aa].items()} for aa in aa_decoder}
aa_atom_type_tensor = torch.tensor([[atom_encoder.get(aa_atom_decoder[aa].get(i, '-')[0], -42)
for i in range(14)] for aa in aa_decoder])
def set_default(namespace, key, default_val):
val = vars(namespace).get(key, default_val)
setattr(namespace, key, val)
class DrugFlow(pl.LightningModule):
def __init__(
self,
pocket_representation: str,
train_params: Namespace,
loss_params: Namespace,
eval_params: Namespace,
predictor_params: Namespace,
simulation_params: Namespace,
virtual_nodes: Union[list, None],
flexible: bool,
flexible_bb: bool = False,
debug: bool = False,
overfit: bool = False,
):
super(DrugFlow, self).__init__()
self.save_hyperparameters()
# Set default parameters
set_default(train_params, "sharded_dataset", False)
set_default(train_params, "sample_from_clusters", False)
set_default(train_params, "lr_step_size", None)
set_default(train_params, "lr_gamma", None)
set_default(train_params, "gnina", None)
set_default(loss_params, "lambda_x", 1.0)
set_default(loss_params, "lambda_clash", None)
set_default(loss_params, "reduce", "mean")
set_default(loss_params, "regularize_uncertainty", None)
set_default(eval_params, "n_loss_per_sample", 1)
set_default(eval_params, "n_sampling_steps", simulation_params.n_steps)
set_default(predictor_params, "transform_sc_pred", False)
set_default(predictor_params, "add_chi_as_feature", False)
set_default(predictor_params, "augment_residue_sc", False)
set_default(predictor_params, "augment_ligand_sc", False)
set_default(predictor_params, "add_all_atom_diff", False)
set_default(predictor_params, "angle_act_fn", None)
set_default(simulation_params, "predict_confidence", False)
set_default(simulation_params, "predict_final", False)
set_default(simulation_params, "scheduler_chi", None)
# Check for invalid configurations
assert pocket_representation in {'side_chain_bead', 'CA+'}
self.pocket_representation = pocket_representation
assert flexible or not predictor_params.augment_residue_sc
self.augment_residue_sc = predictor_params.augment_residue_sc \
if 'augment_residue_sc' in predictor_params else False
self.augment_ligand_sc = predictor_params.augment_ligand_sc \
if 'augment_ligand_sc' in predictor_params else False
assert not (flexible_bb and predictor_params.normal_modes), \
"Normal mode eigenvectors are only meaningful for fixed backbones"
assert (not flexible_bb) or flexible, \
"Currently atom vectors aren't updated if flexible=False"
assert not (simulation_params.predict_confidence and
(not predictor_params.heterogeneous_graph or simulation_params.predict_final))
# Set parameters
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.virtual_nodes = virtual_nodes
self.flexible = flexible
self.flexible_bb = flexible_bb
self.debug = debug
self.overfit = overfit
self.predict_confidence = simulation_params.predict_confidence
if self.virtual_nodes:
self.add_virtual_min = virtual_nodes[0]
self.add_virtual_max = virtual_nodes[1]
# Training parameters
self.datadir = train_params.datadir
self.receptor_dir = train_params.datadir
self.batch_size = train_params.batch_size
self.lr = train_params.lr
self.lr_step_size = train_params.lr_step_size
self.lr_gamma = train_params.lr_gamma
self.num_workers = train_params.num_workers
self.sample_from_clusters = train_params.sample_from_clusters
self.sharded_dataset = train_params.sharded_dataset
self.clip_grad = train_params.clip_grad
if self.clip_grad:
self.gradnorm_queue = utils.Queue()
# Add large value that will be flushed.
self.gradnorm_queue.add(3000)
# Evaluation parameters
self.outdir = eval_params.outdir
self.eval_batch_size = eval_params.eval_batch_size
self.eval_epochs = eval_params.eval_epochs
# assert eval_params.visualize_sample_epoch % self.eval_epochs == 0
self.visualize_sample_epoch = eval_params.visualize_sample_epoch
self.visualize_chain_epoch = eval_params.visualize_chain_epoch
self.sample_with_ground_truth_size = eval_params.sample_with_ground_truth_size
self.n_loss_per_sample = eval_params.n_loss_per_sample
self.n_eval_samples = eval_params.n_eval_samples
self.n_visualize_samples = eval_params.n_visualize_samples
self.keep_frames = eval_params.keep_frames
self.gnina = train_params.gnina
# Feature encoders/decoders
self.atom_encoder = atom_encoder
self.atom_decoder = atom_decoder
self.bond_encoder = bond_encoder
self.bond_decoder = bond_decoder
self.aa_encoder = aa_encoder
self.aa_decoder = aa_decoder
self.residue_encoder = residue_encoder
self.residue_decoder = residue_decoder
self.residue_bond_encoder = residue_bond_encoder
self.residue_bond_decoder = residue_bond_decoder
self.atom_nf = len(self.atom_decoder)
self.residue_nf = len(self.aa_decoder)
if self.pocket_representation == 'side_chain_bead':
self.residue_nf += len(self.residue_encoder)
if self.pocket_representation == 'CA+':
self.aa_atom_index = aa_atom_index
self.n_atom_aa = max([x for aa in aa_atom_index.values() for x in aa.values()]) + 1
self.residue_nf = (self.residue_nf, self.n_atom_aa) # (s, V)
self.bond_nf = len(self.bond_decoder)
self.pocket_bond_nf = len(self.residue_bond_decoder)
self.x_dim = 3
# Set up the neural network
self.dynamics = self.init_model(predictor_params)
# Initialize objects for each variable type
if simulation_params.predict_final:
self.module_x = CoordICFMPredictFinal(None)
self.module_chi = TorusICFMPredictFinal(None, 5) if self.flexible else None
if self.flexible_bb:
raise NotImplementedError()
else:
self.module_x = CoordICFM(None)
# self.module_chi = AngleICFM(None, 5) if self.flexible else None
scheduler_args = None if simulation_params.scheduler_chi is None else vars(simulation_params.scheduler_chi)
self.module_chi = TorusICFM(None, 5, scheduler_args) if self.flexible else None
self.module_trans = CoordICFM(None) if self.flexible_bb else None
self.module_rot = SO3ICFM(None) if self.flexible_bb else None
if simulation_params.prior_h == 'uniform':
self.module_h = UniformPriorMarkovBridge(self.atom_nf, loss_type=loss_params.discrete_loss)
elif simulation_params.prior_h == 'marginal':
self.register_buffer('prior_h', self.get_categorical_prop('atom')) # add to module
self.module_h = MarginalPriorMarkovBridge(self.atom_nf, self.prior_h, loss_type=loss_params.discrete_loss)
if simulation_params.prior_e == 'uniform':
self.module_e = UniformPriorMarkovBridge(self.bond_nf, loss_type=loss_params.discrete_loss)
elif simulation_params.prior_e == 'marginal':
self.register_buffer('prior_e', self.get_categorical_prop('bond')) # add to module
self.module_e = MarginalPriorMarkovBridge(self.bond_nf, self.prior_e, loss_type=loss_params.discrete_loss)
# Loss parameters
self.loss_reduce = loss_params.reduce
self.lambda_x = loss_params.lambda_x
self.lambda_h = loss_params.lambda_h
self.lambda_e = loss_params.lambda_e
self.lambda_chi = loss_params.lambda_chi if self.flexible else None
self.lambda_trans = loss_params.lambda_trans if self.flexible_bb else None
self.lambda_rot = loss_params.lambda_rot if self.flexible_bb else None
self.lambda_clash = loss_params.lambda_clash
self.regularize_uncertainty = loss_params.regularize_uncertainty
if loss_params.timestep_weights is not None:
weight_type = loss_params.timestep_weights.split('_')[0]
kwargs = loss_params.timestep_weights.split('_')[1:]
kwargs = {x.split('=')[0]: float(x.split('=')[1]) for x in kwargs}
self.timestep_weights = TimestepWeights(weight_type, **kwargs)
else:
self.timestep_weights = None
# Sampling
self.T_sampling = eval_params.n_sampling_steps
self.train_step_size = 1 / simulation_params.n_steps
self.size_distribution = None # initialized only if needed
# Metrics, initialized only if needed
self.train_smiles = None
self.ligand_metrics = None
self.molecule_properties = None
self.evaluator = None
self.ligand_atom_type_distribution = None
self.ligand_bond_type_distribution = None
# containers for metric aggregation
self.training_step_outputs = []
self.validation_step_outputs = []
def on_load_checkpoint(self, checkpoint):
"""
This hook is only used for backward compatibility with checkpoints that
did not save prior_h and prior_e in state_dict in the past
"""
if hasattr(self, "prior_h") and "prior_h" not in checkpoint["state_dict"]:
checkpoint["state_dict"]["prior_h"] = self.get_categorical_prop('atom')
if hasattr(self, "prior_e") and "prior_e" not in checkpoint["state_dict"]:
checkpoint["state_dict"]["prior_e"] = self.get_categorical_prop('bond')
if "prior_e" in checkpoint["state_dict"] and not hasattr(self, "prior_e"):
# NOTE: a very exotic case that happened to one model. Potentially can be removed in the future
self.register_buffer("prior_e", self.get_categorical_prop('bond'))
def init_model(self, predictor_params):
model_type = predictor_params.backbone
if 'heterogeneous_graph' in predictor_params and predictor_params.heterogeneous_graph:
return DynamicsHetero(
atom_nf=self.atom_nf,
residue_nf=self.residue_nf,
bond_dict=self.bond_encoder,
pocket_bond_dict=self.residue_bond_encoder,
model=model_type,
num_rbf_time=predictor_params.__dict__.get('num_rbf_time'),
model_params=getattr(predictor_params, model_type + '_params'),
edge_cutoff_ligand=predictor_params.edge_cutoff_ligand,
edge_cutoff_pocket=predictor_params.edge_cutoff_pocket,
edge_cutoff_interaction=predictor_params.edge_cutoff_interaction,
predict_angles=self.flexible,
predict_frames=self.flexible_bb,
add_cycle_counts=predictor_params.cycle_counts,
add_spectral_feat=predictor_params.spectral_feat,
add_nma_feat=predictor_params.normal_modes,
reflection_equiv=predictor_params.reflection_equivariant,
d_max=predictor_params.d_max,
num_rbf_dist=predictor_params.num_rbf,
self_conditioning=predictor_params.self_conditioning,
augment_residue_sc=self.augment_residue_sc,
augment_ligand_sc=self.augment_ligand_sc,
add_chi_as_feature=predictor_params.add_chi_as_feature,
angle_act_fn=predictor_params.angle_act_fn,
add_all_atom_diff=predictor_params.add_all_atom_diff,
predict_confidence=self.predict_confidence,
)
else:
if predictor_params.__dict__.get('num_rbf_time') is not None:
raise NotImplementedError("RBF time embedding not yet implemented")
return Dynamics(
atom_nf=self.atom_nf,
residue_nf=self.residue_nf,
joint_nf=predictor_params.joint_nf,
bond_dict=self.bond_encoder,
pocket_bond_dict=self.residue_bond_encoder,
edge_nf=predictor_params.edge_nf,
hidden_nf=predictor_params.hidden_nf,
model=model_type,
model_params=getattr(predictor_params, model_type + '_params'),
edge_cutoff_ligand=predictor_params.edge_cutoff_ligand,
edge_cutoff_pocket=predictor_params.edge_cutoff_pocket,
edge_cutoff_interaction=predictor_params.edge_cutoff_interaction,
predict_angles=self.flexible,
predict_frames=self.flexible_bb,
add_cycle_counts=predictor_params.cycle_counts,
add_spectral_feat=predictor_params.spectral_feat,
add_nma_feat=predictor_params.normal_modes,
self_conditioning=predictor_params.self_conditioning,
augment_residue_sc=self.augment_residue_sc,
augment_ligand_sc=self.augment_ligand_sc,
add_chi_as_feature=predictor_params.add_chi_as_feature,
angle_act_fn=predictor_params.angle_act_fn,
)
def _load_histogram(self, type):
"""
Load empirical categorical distributions of atom or bond types from disk.
Returns None if the required file is not found.
"""
assert type in {"atom", "bond"}
filename = 'ligand_type_histogram.npy' if type == 'atom' else 'ligand_bond_type_histogram.npy'
encoder = self.atom_encoder if type == 'atom' else self.bond_encoder
hist_file = Path(self.datadir, filename)
if not hist_file.exists():
return None
hist = np.load(hist_file, allow_pickle=True).item()
return CategoricalDistribution(hist, encoder)
def get_categorical_prop(self, type):
hist = self._load_histogram(type)
encoder = self.atom_encoder if type == 'atom' else self.bond_encoder
# Note: default value ensures that code will crash if prior is not
# read from disk or loaded from checkpoint later on
return torch.zeros(len(encoder)) * float("nan") if hist is None else torch.tensor(hist.p)
def configure_optimizers(self):
optimizers = [
torch.optim.AdamW(self.parameters(), lr=self.lr, amsgrad=True, weight_decay=1e-12),
]
if self.lr_step_size is None or self.lr_gamma is None:
lr_schedulers = []
else:
lr_schedulers = [
torch.optim.lr_scheduler.StepLR(optimizers[0], step_size=self.lr_step_size, gamma=self.lr_gamma),
]
return optimizers, lr_schedulers
def setup(self, stage: Optional[str] = None):
self.setup_sampling()
if stage == 'fit':
self.train_dataset = self.get_dataset(stage='train')
self.val_dataset = self.get_dataset(stage='val')
self.setup_metrics()
elif stage == 'val':
self.val_dataset = self.get_dataset(stage='val')
self.setup_metrics()
elif stage == 'test':
self.test_dataset = self.get_dataset(stage='test')
self.setup_metrics()
elif stage == 'generation':
pass
else:
raise NotImplementedError
def get_dataset(self, stage, pocket_transform=None):
# when sampling we don't append virtual nodes as we might need access to the ground truth size
if self.virtual_nodes and stage == "train":
ligand_transform = AppendVirtualNodesInCoM(
atom_encoder, bond_encoder, add_min=self.add_virtual_min, add_max=self.add_virtual_max)
else:
ligand_transform = None
# we want to know if something goes wrong on the validation or test set
catch_errors = stage == "train"
if self.sharded_dataset:
return get_wds(
data_path=self.datadir,
stage='val' if self.debug else stage,
ligand_transform=ligand_transform,
pocket_transform=pocket_transform,
)
if self.sample_from_clusters and stage == "train": # val/test should be deterministic
return ClusteredDataset(
pt_path=Path(self.datadir, 'val.pt' if self.debug else f'{stage}.pt'),
ligand_transform=ligand_transform,
pocket_transform=pocket_transform,
catch_errors=catch_errors
)
return ProcessedLigandPocketDataset(
pt_path=Path(self.datadir, 'val.pt' if self.debug else f'{stage}.pt'),
ligand_transform=ligand_transform,
pocket_transform=pocket_transform,
catch_errors=catch_errors
)
def setup_sampling(self):
# distribution of nodes
histogram_file = Path(self.datadir, 'size_distribution.npy') # TODO: store this in model checkpoint so that we can sample without this file
size_histogram = np.load(histogram_file).tolist()
self.size_distribution = DistributionNodes(size_histogram)
def setup_metrics(self):
# For metrics
smiles_file = Path(self.datadir, 'train_smiles.npy')
self.train_smiles = None if not smiles_file.exists() else np.load(smiles_file)
self.ligand_metrics = MoleculeValidity()
self.molecule_properties = MolecularProperties()
self.evaluator = FullEvaluator(gnina=self.gnina, exclude_evaluators=['geometry', 'ring_count'])
self.ligand_atom_type_distribution = self._load_histogram('atom')
self.ligand_bond_type_distribution = self._load_histogram('bond')
def train_dataloader(self):
shuffle = None if self.overfit else False if self.sharded_dataset else True
return DataLoader(self.train_dataset, self.batch_size, shuffle=shuffle,
sampler=SubsetRandomSampler([0]) if self.overfit else None,
num_workers=self.num_workers,
collate_fn=self.train_dataset.collate_fn,
# collate_fn=partial(self.train_dataset.collate_fn, ligand_transform=batch_transform),
pin_memory=True)
def val_dataloader(self):
if self.overfit:
return self.train_dataloader()
return DataLoader(self.val_dataset, self.eval_batch_size,
shuffle=False, num_workers=self.num_workers,
collate_fn=self.val_dataset.collate_fn,
pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, self.eval_batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.test_dataset.collate_fn,
pin_memory=True)
def log_metrics(self, metrics_dict, split, batch_size=None, **kwargs):
for m, value in metrics_dict.items():
self.log(f'{m}/{split}', value, batch_size=batch_size, **kwargs)
def aggregate_metrics(self, step_outputs, prefix):
if 'timestep' in step_outputs[0]:
timesteps = torch.cat([x['timestep'] for x in step_outputs]).squeeze()
if 'loss_per_sample' in step_outputs[0]:
losses = torch.cat([x['loss_per_sample'] for x in step_outputs])
pearson_corr = torch.corrcoef(torch.stack([timesteps, losses], dim=0))[0, 1]
self.log(f'corr_loss_timestep/{prefix}', pearson_corr, prog_bar=False)
if 'eps_hat_norm' in step_outputs[0]:
eps_norm = torch.cat([x['eps_hat_norm'] for x in step_outputs])
pearson_corr = torch.corrcoef(torch.stack([timesteps, eps_norm], dim=0))[0, 1]
self.log(f'corr_eps_timestep/{prefix}', pearson_corr, prog_bar=False)
def on_train_epoch_end(self):
self.aggregate_metrics(self.training_step_outputs, 'train')
self.training_step_outputs.clear()
# TODO: doesn't work in multi-GPU mode
# def on_before_batch_transfer(self, batch, dataloader_idx):
# """
# Performs operations on data before it is transferred to the GPU.
# Hence, supports multiple dataloaders for speedup.
# """
# batch['pocket'] = Residues(**batch['pocket'])
# return batch
# # TODO: try if this is compatible with DDP
# def on_after_batch_transfer(self, batch, dataloader_idx):
# """
# Performs operations on data after it is transferred to the GPU.
# """
# batch['pocket'] = Residues(**batch['pocket'])
# batch['ligand'] = TensorDict(**batch['ligand'])
# return batch
def get_sc_transform_fn(self, zt_chi, zt_x, t, z0_chi, ligand_mask, pocket):
sc_transform = {}
if self.augment_residue_sc:
def pred_all_atom(pred_chi, pred_trans=None, pred_rot=None):
temp_pocket = pocket.deepcopy()
if pred_trans is not None and pred_rot is not None:
zt_trans = pocket['x']
zt_rot = pocket['axis_angle']
z1_trans_pred = self.module_trans.get_z1_given_zt_and_pred(
zt_trans, pred_trans, None, t, pocket['mask'])
z1_rot_pred = self.module_rot.get_z1_given_zt_and_pred(
zt_rot, pred_rot, None, t, pocket['mask'])
temp_pocket.set_frame(z1_trans_pred, z1_rot_pred)
z1_chi_pred = self.module_chi.get_z1_given_zt_and_pred(
zt_chi[..., :5], pred_chi, z0_chi, t, pocket['mask'])
temp_pocket.set_chi(z1_chi_pred)
all_coord = temp_pocket['v'] + temp_pocket['x'].unsqueeze(1)
return all_coord - pocket['x'].unsqueeze(1)
sc_transform['residues'] = pred_all_atom
if self.augment_ligand_sc:
# sc_transform['atoms'] = partial(self.module_x.get_z1_given_zt_and_pred, zt=zs_x, z0=None, t=t, batch_mask=lig_mask)
sc_transform['atoms'] = lambda pred: (self.module_x.get_z1_given_zt_and_pred(
zt_x, pred.squeeze(1), None, t, ligand_mask) - zt_x).unsqueeze(1)
return sc_transform
def compute_loss(self, ligand, pocket, return_info=False):
"""
Samples time steps and computes network predictions
"""
# TODO: move somewhere else (like collate_fn)
pocket = Residues(**pocket)
# Center sample
ligand, pocket = center_data(ligand, pocket)
if pocket['x'].numel() > 0:
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
else:
pocket_com = scatter_mean(ligand['x'], ligand['mask'], dim=0)
# # Normalize pocket coordinates
# pocket['x'] = self.module_x.normalize(pocket['x'])
# Sample a timestep t for each example in batch
t = torch.rand(ligand['size'].size(0), device=ligand['x'].device).unsqueeze(-1)
# Noise
z0_x = self.module_x.sample_z0(pocket_com, ligand['mask'])
z0_h = self.module_h.sample_z0(ligand['mask'])
z0_e = self.module_e.sample_z0(ligand['bond_mask'])
zt_x = self.module_x.sample_zt(z0_x, ligand['x'], t, ligand['mask'])
zt_h = self.module_h.sample_zt(z0_h, ligand['one_hot'], t, ligand['mask'])
zt_e = self.module_e.sample_zt(z0_e, ligand['bond_one_hot'], t, ligand['bond_mask'])
if self.flexible_bb:
z0_trans = self.module_trans.sample_z0(pocket_com, pocket['mask'])
z1_trans = pocket['x'].detach().clone()
zt_trans = self.module_trans.sample_zt(z0_trans, z1_trans, t, pocket['mask'])
z0_rot = self.module_rot.sample_z0(pocket['mask'])
z1_rot = pocket['axis_angle'].detach().clone()
zt_rot = self.module_rot.sample_zt(z0_rot, z1_rot, t, pocket['mask'])
# update pocket
pocket.set_frame(zt_trans, zt_rot)
z0_chi, zt_chi = None, None
if self.flexible:
# residues = [data_utils.residue_from_internal_coord(ic) for ic in pocket['residues']]
# residues = pocket['residues']
# z1_chi = torch.stack([data_utils.get_torsion_angles(r, device=self.device) for r in residues], dim=0)
z1_chi = pocket['chi'][:, :5].detach().clone()
z0_chi = self.module_chi.sample_z0(pocket['mask'])
zt_chi = self.module_chi.sample_zt(z0_chi, z1_chi, t, pocket['mask'])
# internal to external coordinates
pocket.set_chi(zt_chi)
if pocket['x'].numel() == 0:
pocket.set_empty_v()
# Predict denoising
sc_transform = self.get_sc_transform_fn(zt_chi, zt_x, t, z0_chi, ligand['mask'], pocket)
# sc_transform = None
pred_ligand, pred_residues = self.dynamics(
zt_x, zt_h, ligand['mask'], pocket, t,
bonds_ligand=(ligand['bonds'], zt_e), sc_transform=sc_transform
)
# Compute L2 loss
if self.predict_confidence:
loss_x = self.module_x.compute_loss(pred_ligand['vel'], z0_x, ligand['x'], t, ligand['mask'], reduce='none')
# compute confidence regularization
k = self.module_x.dim # pred.size(-1)
sigma = pred_ligand['uncertainty_vel']
loss_x = loss_x / (2 * sigma ** 2) + k * torch.log(sigma)
if self.regularize_uncertainty is not None:
loss_x = loss_x + self.regularize_uncertainty * (pred_ligand['uncertainty_vel'] - 1) ** 2
loss_x = self.module_x.reduce_loss(loss_x, ligand['mask'], reduce=self.loss_reduce)
else:
loss_x = self.module_x.compute_loss(pred_ligand['vel'], z0_x, ligand['x'], t, ligand['mask'], reduce=self.loss_reduce)
# Loss for categorical variables
t_next = torch.clamp(t + self.train_step_size, max=1.0)
loss_h = self.module_h.compute_loss(pred_ligand['logits_h'], zt_h, ligand['one_hot'], ligand['mask'], t, t_next, reduce=self.loss_reduce)
loss_e = self.module_e.compute_loss(pred_ligand['logits_e'], zt_e, ligand['bond_one_hot'], ligand['bond_mask'], t, t_next, reduce=self.loss_reduce)
loss = self.lambda_x * loss_x + self.lambda_h * loss_h + self.lambda_e * loss_e
if self.flexible:
loss_chi = self.module_chi.compute_loss(pred_residues['chi'], z0_chi, z1_chi, zt_chi, t, pocket['mask'], reduce=self.loss_reduce)
loss = loss + self.lambda_chi * loss_chi
if self.flexible_bb:
loss_trans = self.module_trans.compute_loss(pred_residues['trans'], z0_trans, z1_trans, t, pocket['mask'], reduce=self.loss_reduce)
loss_rot = self.module_rot.compute_loss(pred_residues['rot'], z0_rot, z1_rot, zt_rot, t, pocket['mask'], reduce=self.loss_reduce)
loss = loss + self.lambda_trans * loss_trans + self.lambda_rot * loss_rot
if self.lambda_clash is not None and self.lambda_clash > 0:
if self.flexible_bb:
pred_z1_trans = self.module_trans.get_z1_given_zt_and_pred(zt_trans, pred_residues['trans'], z0_trans, t, pocket['mask'])
pred_z1_rot = self.module_rot.get_z1_given_zt_and_pred(zt_rot, pred_residues['rot'], z0_rot, t, pocket['mask'])
pocket.set_frame(pred_z1_trans, pred_z1_rot)
if self.flexible:
# internal to external coordinates
pred_z1_chi = self.module_chi.get_z1_given_zt_and_pred(zt_chi, pred_residues['chi'], z0_chi, t, pocket['mask'])
pocket.set_chi(pred_z1_chi)
pocket_coord = pocket['x'].unsqueeze(1) + pocket['v']
pocket_types = aa_atom_type_tensor[pocket['one_hot'].argmax(dim=-1)]
pocket_mask = pocket['mask'].unsqueeze(-1).repeat((1, pocket['v'].size(1)))
# Extract only existing atoms
atom_mask = aa_atom_mask_tensor[pocket['one_hot'].argmax(dim=-1)]
pocket_coord = pocket_coord[atom_mask]
pocket_types = pocket_types[atom_mask]
pocket_mask = pocket_mask[atom_mask]
# pred_z1_x = pred_x + z0_x
pred_z1_x = self.module_x.get_z1_given_zt_and_pred(zt_x, pred_ligand['vel'], z0_x, t, ligand['mask'])
pred_z1_h = pred_ligand['logits_h'].argmax(dim=-1)
loss_clash = clash_loss(pred_z1_x, pred_z1_h, ligand['mask'],
pocket_coord, pocket_types, pocket_mask)
loss = loss + self.lambda_clash * loss_clash
if self.timestep_weights is not None:
w_t = self.timestep_weights(t).squeeze()
loss = w_t * loss
loss = loss.mean(0)
info = {
'loss_x': loss_x.mean().item(),
'loss_h': loss_h.mean().item(),
'loss_e': loss_e.mean().item(),
}
if self.flexible:
info['loss_chi'] = loss_chi.mean().item()
if self.flexible_bb:
info['loss_trans'] = loss_trans.mean().item()
info['loss_rot'] = loss_rot.mean().item()
if self.lambda_clash is not None:
info['loss_clash'] = loss_clash.mean().item()
if self.predict_confidence:
sigma_x_mol = scatter_mean(pred_ligand['uncertainty_vel'], ligand['mask'], dim=0)
info['pearson_sigma_x'] = torch.corrcoef(torch.stack([sigma_x_mol.detach(), t.squeeze()]))[0, 1].item()
info['mean_sigma_x'] = sigma_x_mol.mean().item()
entropy_h = Categorical(logits=pred_ligand['logits_h']).entropy()
entropy_h_mol = scatter_mean(entropy_h, ligand['mask'], dim=0)
info['pearson_entropy_h'] = torch.corrcoef(torch.stack([entropy_h_mol.detach(), t.squeeze()]))[0, 1].item()
info['mean_entropy_h'] = entropy_h_mol.mean().item()
entropy_e = Categorical(logits=pred_ligand['logits_e']).entropy()
entropy_e_mol = scatter_mean(entropy_e, ligand['bond_mask'], dim=0)
info['pearson_entropy_e'] = torch.corrcoef(torch.stack([entropy_e_mol.detach(), t.squeeze()]))[0, 1].item()
info['mean_entropy_e'] = entropy_e_mol.mean().item()
return (loss, info) if return_info else loss
def training_step(self, data, *args):
ligand, pocket = data['ligand'], data['pocket']
try:
loss, info = self.compute_loss(ligand, pocket, return_info=True)
except RuntimeError as e:
# this is not supported for multi-GPU
if self.trainer.num_devices < 2 and 'out of memory' in str(e):
print('WARNING: ran out of memory, skipping to the next batch')
return None
else:
raise e
log_dict = {k: v for k, v in info.items() if isinstance(v, float)
or torch.numel(v) <= 1}
# if self.learn_nu:
# log_dict['nu_x'] = self.noise_schedules['x'].nu.item()
# log_dict['nu_h'] = self.noise_schedules['h'].nu.item()
# log_dict['nu_e'] = self.noise_schedules['e'].nu.item()
self.log_metrics({'loss': loss, **log_dict}, 'train',
batch_size=len(ligand['size']))
out = {'loss': loss, **info}
self.training_step_outputs.append(out)
return out
def validation_step(self, data, *args):
# Compute the loss N times and average to get a better estimate
loss_list, info_list = [], []
self.dynamics.train() # TODO: this is currently necessary to make self-conditioning work
for _ in range(self.n_loss_per_sample):
loss, info = self.compute_loss(data['ligand'].copy(),
data['pocket'].copy(),
return_info=True)
loss_list.append(loss.item())
info_list.append(info)
self.dynamics.eval()
if len(loss_list) >= 1:
loss = np.mean(loss_list)
info = {k: np.mean([x[k] for x in info_list]) for k in info_list[0]}
self.log_metrics({'loss': loss, **info}, 'val', batch_size=len(data['ligand']['size']))
# Sample
rdmols, rdpockets, _ = self.sample(
data=data,
n_samples=self.n_eval_samples,
num_nodes="ground_truth" if self.sample_with_ground_truth_size else None,
)
out = {
'ligands': rdmols,
'pockets': rdpockets,
'receptor_files': [Path(self.receptor_dir, 'val', x) for x in data['pocket']['name']]
}
self.validation_step_outputs.append(out)
return out
# def test_step(self, data, *args):
# self._shared_eval(data, 'test', *args)
def on_validation_epoch_end(self):
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
rdmols = [m for x in self.validation_step_outputs for m in x['ligands']]
rdpockets = [p for x in self.validation_step_outputs for p in x['pockets']]
receptors = [r for x in self.validation_step_outputs for r in x['receptor_files']]
self.validation_step_outputs.clear()
ligand_atom_types = [atom_encoder[a.GetSymbol()] for m in rdmols for a in m.GetAtoms()]
ligand_bond_types = []
for m in rdmols:
bonds = m.GetBonds()
no_bonds = m.GetNumAtoms() * (m.GetNumAtoms() - 1) // 2 - m.GetNumBonds()
ligand_bond_types += [bond_encoder['NOBOND']] * no_bonds
for b in bonds:
ligand_bond_types.append(bond_encoder[b.GetBondType().name])
tic = time()
results = self.analyze_sample(
rdmols, ligand_atom_types, ligand_bond_types, receptors=(rdpockets if len(rdpockets) != 0 else None)
)
self.log_metrics(results, 'val')
print(f'Evaluation took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_sample_epoch == 0:
tic = time()
outdir.mkdir(exist_ok=True, parents=True)
# center for better visualization
rdmols = rdmols[:self.n_visualize_samples]
rdpockets = rdpockets[:self.n_visualize_samples]
for m, p in zip(rdmols, rdpockets):
center = m.GetConformer().GetPositions().mean(axis=0)
for i in range(m.GetNumAtoms()):
x, y, z = m.GetConformer().GetPositions()[i] - center
m.GetConformer().SetAtomPosition(i, (x, y, z))
for i in range(p.GetNumAtoms()):
x, y, z = p.GetConformer().GetPositions()[i] - center
p.GetConformer().SetAtomPosition(i, (x, y, z))
# save molecule
utils.write_sdf_file(Path(outdir, 'molecules.sdf'), rdmols)
# save pocket
utils.write_sdf_file(Path(outdir, 'pockets.sdf'), rdpockets)
print(f'Sample visualization took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_chain_epoch == 0:
tic = time()
outdir.mkdir(exist_ok=True, parents=True)
if self.sharded_dataset:
index = torch.randint(len(self.val_dataset), size=(1,)).item()
for i, x in enumerate(self.val_dataset):
if i == index:
break
batch = self.val_dataset.collate_fn([x])
else:
batch = self.val_dataset.collate_fn([self.val_dataset[torch.randint(len(self.val_dataset), size=(1,))]])
batch['pocket'] = Residues(**batch['pocket']).to(self.device)
pocket_copy = batch['pocket'].copy()
if len(batch['pocket']['x']) > 0:
ligand_chain, pocket_chain, info = self.sample_chain(batch['pocket'], self.keep_frames)
else:
num_nodes, _ = self.size_distribution.sample()
ligand_chain, pocket_chain, info = self.sample_chain(batch['pocket'], self.keep_frames, num_nodes=num_nodes)
# utils.write_sdf_file(Path(outdir, 'chain_pocket.sdf'), pocket_chain)
# utils.write_chain(Path(outdir, 'chain_pocket.xyz'), pocket_chain)
if self.flexible or self.flexible_bb:
# insert ground truth at the beginning so that it's used by PyMOL to determine the connectivity
ground_truth_pocket = pocket_to_rdkit(
pocket_copy, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index
)[0]
ground_truth_ligand = build_molecule(
batch['ligand']['x'], batch['ligand']['one_hot'].argmax(1),
bonds=batch['ligand']['bonds'],
bond_types=batch['ligand']['bond_one_hot'].argmax(1),
atom_decoder=self.atom_decoder,
bond_decoder=self.bond_decoder
)
pocket_chain.insert(0, ground_truth_pocket)
ligand_chain.insert(0, ground_truth_ligand)
# pocket_chain.insert(0, pocket_chain[-1])
# ligand_chain.insert(0, ligand_chain[-1])
# save molecules
utils.write_sdf_file(Path(outdir, 'chain_ligand.sdf'), ligand_chain)
# save pocket
mols_to_pdbfile(pocket_chain, Path(outdir, 'chain_pocket.pdb'))
self.log_metrics(info, 'val')
print(f'Chain visualization took {time() - tic:.2f} seconds')
# NOTE: temporary fix of this Lightning bug:
# https://github.com/Lightning-AI/pytorch-lightning/discussions/18110
# Without it resume training has a strange behavior and fails
@property
def total_batch_idx(self) -> int:
"""Returns the current batch index (across epochs)"""
# use `ready` instead of `completed` in case this is accessed after `completed` has been increased
# but before the next `ready` increase
return max(0, self.batch_progress.total.ready - 1)
@property
def batch_idx(self) -> int:
"""Returns the current batch index (within this epoch)"""
# use `ready` instead of `completed` in case this is accessed after `completed` has been increased
# but before the next `ready` increase
return max(0, self.batch_progress.current.ready - 1)
# def analyze_sample(self, rdmols, atom_types, bond_types, aa_types=None, receptors=None):
# out = {}
# # Distribution of node types
# kl_div_atom = self.ligand_atom_type_distribution.kl_divergence(atom_types) \
# if self.ligand_atom_type_distribution is not None else -1
# out['kl_div_atom_types'] = kl_div_atom
# # Distribution of edge types
# kl_div_bond = self.ligand_bond_type_distribution.kl_divergence(bond_types) \
# if self.ligand_bond_type_distribution is not None else -1
# out['kl_div_bond_types'] = kl_div_bond
# if aa_types is not None:
# kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
# if self.pocket_type_distribution is not None else -1
# out['kl_div_residue_types'] = kl_div_aa
# # Post-process sample
# processed_mols = [process_all(m) for m in rdmols]
# # Other basic metrics
# results = self.ligand_metrics(rdmols)
# out['n_samples'] = results['n_total']
# out['Validity'] = results['validity']
# out['Connectivity'] = results['connectivity']
# out['valid_and_connected'] = results['valid_and_connected']
# # connected_mols = [get_largest_fragment(m) for m in rdmols]
# connected_mols = [process_all(m, largest_frag=True, adjust_aromatic_Ns=False, relax_iter=0) for m in rdmols]
# connected_mols = [m for m in connected_mols if m is not None]
# out.update(self.molecule_properties(connected_mols))
# # Repeat after post-processing
# results = self.ligand_metrics(processed_mols)
# out['validity_processed'] = results['validity']
# out['connectivity_processed'] = results['connectivity']
# out['valid_and_connected_processed'] = results['valid_and_connected']
# processed_mols = [m for m in processed_mols if m is not None]
# for k, v in self.molecule_properties(processed_mols).items():
# out[f"{k}_processed"] = v
# # Simple docking score
# if receptors is not None and self.gnina is not None:
# assert len(receptors) == len(rdmols)
# docking_results = compute_gnina_scores(rdmols, receptors, gnina=self.gnina)
# out.update(docking_results)
# # Clash score
# if receptors is not None:
# assert len(receptors) == len(rdmols)
# clashes = {
# 'ligands': [legacy_clash_score(m) for m in rdmols],
# 'pockets': [legacy_clash_score(p) for p in receptors],
# 'between': [legacy_clash_score(m, p) for m, p in zip(rdmols, receptors)],
# 'v2_ligands': [clash_score(m) for m in rdmols],
# 'v2_pockets': [clash_score(p) for p in receptors],
# 'v2_between': [clash_score(m, p) for m, p in zip(rdmols, receptors)]
# }
# for k, v in clashes.items():
# out[f'mean_clash_score_{k}'] = np.mean(v)
# out[f'frac_no_clashes_{k}'] = np.mean(np.array(v) <= 0.0)
# return out
def analyze_sample(self, rdmols, atom_types, bond_types, aa_types=None, receptors=None):
out = {}
# Distribution of node types
kl_div_atom = self.ligand_atom_type_distribution.kl_divergence(atom_types) \
if self.ligand_atom_type_distribution is not None else -1
out['kl_div_atom_types'] = kl_div_atom
# Distribution of edge types
kl_div_bond = self.ligand_bond_type_distribution.kl_divergence(bond_types) \
if self.ligand_bond_type_distribution is not None else -1
out['kl_div_bond_types'] = kl_div_bond
if aa_types is not None:
kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
if self.pocket_type_distribution is not None else -1
out['kl_div_residue_types'] = kl_div_aa
# Evaluation
results = []
if receptors is not None:
with tempfile.TemporaryDirectory() as tmpdir:
for mol, receptor in zip(tqdm(rdmols, desc='FullEvaluator'), receptors):
receptor_path = Path(tmpdir, 'receptor.pdb')
Chem.MolToPDBFile(receptor, str(receptor_path))
results.append(self.evaluator(mol, receptor_path))
else:
for mol in tqdm(rdmols, desc='FullEvaluator'):
self.evaluator = FullEvaluator(pb_conf='mol')
results.append(self.evaluator(mol))
results = pd.DataFrame(results)
agg_results = aggregated_metrics(results, self.evaluator.dtypes, VALIDITY_METRIC_NAME).fillna(0)
agg_results['metric'] = agg_results['metric'].str.replace('.', '/')
col_results = collection_metrics(results, self.train_smiles, VALIDITY_METRIC_NAME, exclude_evaluators='fcd')
col_results['metric'] = 'collection/' + col_results['metric']
all_results = pd.concat([agg_results, col_results])
out.update(**dict(all_results[['metric', 'value']].values))
return out
def sample_zt_given_zs(self, zs_ligand, zs_pocket, s, t, delta_eps_x=None, uncertainty=None):
sc_transform = self.get_sc_transform_fn(zs_pocket.get('chi'), zs_ligand['x'], s, None, zs_ligand['mask'], zs_pocket)
pred_ligand, pred_residues = self.dynamics(
zs_ligand['x'], zs_ligand['h'], zs_ligand['mask'], zs_pocket, s, bonds_ligand=(zs_ligand['bonds'], zs_ligand['e']),
sc_transform=sc_transform
)
if delta_eps_x is not None:
pred_ligand['vel'] = pred_ligand['vel'] + delta_eps_x
zt_ligand = zs_ligand.copy()
zt_ligand['x'] = self.module_x.sample_zt_given_zs(zs_ligand['x'], pred_ligand['vel'], s, t, zs_ligand['mask'])
zt_ligand['h'] = self.module_h.sample_zt_given_zs(zs_ligand['h'], pred_ligand['logits_h'], s, t, zs_ligand['mask'])
zt_ligand['e'] = self.module_e.sample_zt_given_zs(zs_ligand['e'], pred_ligand['logits_e'], s, t, zs_ligand['edge_mask'])
zt_pocket = zs_pocket.copy()
if self.flexible_bb:
zt_trans_pocket = self.module_trans.sample_zt_given_zs(zs_pocket['x'], pred_residues['trans'], s, t, zs_pocket['mask'])
zt_rot_pocket = self.module_rot.sample_zt_given_zs(zs_pocket['axis_angle'], pred_residues['rot'], s, t, zs_pocket['mask'])
# update pocket in-place
zt_pocket.set_frame(zt_trans_pocket, zt_rot_pocket)
if self.flexible:
zt_chi_pocket = self.module_chi.sample_zt_given_zs(zs_pocket['chi'][..., :5], pred_residues['chi'], s, t, zs_pocket['mask'])
# update pocket in-place
zt_pocket.set_chi(zt_chi_pocket)
if self.predict_confidence:
assert uncertainty is not None
dt = (t - s).view(-1)[zt_ligand['mask']]
uncertainty['sigma_x_squared'] += (dt * pred_ligand['uncertainty_vel']**2)
uncertainty['entropy_h'] += (dt * Categorical(logits=pred_ligand['logits_h']).entropy())
return zt_ligand, zt_pocket
def simulate(self, ligand, pocket, timesteps, t_start, t_end=1.0,
return_frames=1, guide_log_prob=None):
"""
Take a version of the ligand and pocket (at any time step t_start) and
simulate the generative process from t_start to t_end.
"""
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
assert 0.0 <= t_start < 1.0
assert 0 < t_end <= 1.0
assert t_start < t_end
device = ligand['x'].device
n_samples = len(pocket['size'])
delta_t = (t_end - t_start) / timesteps
# Initialize output tensors
out_ligand = {
'x': torch.zeros((return_frames, len(ligand['mask']), self.x_dim), device=device),
'h': torch.zeros((return_frames, len(ligand['mask']), self.atom_nf), device=device),
'e': torch.zeros((return_frames, len(ligand['edge_mask']), self.bond_nf), device=device)
}
if self.predict_confidence:
out_ligand['sigma_x'] = torch.zeros((return_frames, len(ligand['mask'])), device=device)
out_ligand['entropy_h'] = torch.zeros((return_frames, len(ligand['mask'])), device=device)
out_pocket = {
'x': torch.zeros((return_frames, len(pocket['mask']), 3), device=device), # CA-coord
'v': torch.zeros((return_frames, len(pocket['mask']), self.n_atom_aa, 3), device=device) # difference vectors to all other atoms
}
cumulative_uncertainty = {
'sigma_x_squared': torch.zeros(len(ligand['mask']), device=device),
'entropy_h': torch.zeros(len(ligand['mask']), device=device)
} if self.predict_confidence else None
for i, t in enumerate(torch.linspace(t_start, t_end - delta_t, timesteps)):
t_array = torch.full((n_samples, 1), fill_value=t, device=device)
if guide_log_prob is not None:
raise NotImplementedError('Not yet implemented for flow matching model')
alpha_t = self.diffusion_x.schedule.alpha(self.gamma_x(t_array))
with torch.enable_grad():
zt_x_ligand.requires_grad = True
g = guide_log_prob(t_array, x=ligand['x'], h=ligand['h'], batch_mask=ligand['mask'],
bonds=ligand['bonds'], bond_types=ligand['e'])
# Compute gradient w.r.t. coordinates
grad_x_lig = torch.autograd.grad(g.sum(), inputs=ligand['x'])[0]
# clip gradients
g_max = 1.0
clip_mask = (grad_x_lig.norm(dim=-1) > g_max)
grad_x_lig[clip_mask] = \
grad_x_lig[clip_mask] / grad_x_lig[clip_mask].norm(
dim=-1, keepdim=True) * g_max
delta_eps_lig = -1 * (1 - alpha_t[lig_mask]).sqrt() * grad_x_lig
else:
delta_eps_lig = None
ligand, pocket = self.sample_zt_given_zs(
ligand, pocket, t_array, t_array + delta_t, delta_eps_lig, cumulative_uncertainty)
# save frame
if (i + 1) % (timesteps // return_frames) == 0:
idx = (i + 1) // (timesteps // return_frames)
idx = idx - 1
out_ligand['x'][idx] = ligand['x'].detach()
out_ligand['h'][idx] = ligand['h'].detach()
out_ligand['e'][idx] = ligand['e'].detach()
if pocket['x'].numel() > 0:
out_pocket['x'][idx] = pocket['x'].detach()
out_pocket['v'][idx] = pocket['v'][:, :self.n_atom_aa, :].detach()
if self.predict_confidence:
out_ligand['sigma_x'][idx] = cumulative_uncertainty['sigma_x_squared'].sqrt().detach()
out_ligand['entropy_h'][idx] = cumulative_uncertainty['entropy_h'].detach()
# remove frame dimension if only the final molecule is returned
out_ligand = {k: v.squeeze(0) for k, v in out_ligand.items()}
out_pocket = {k: v.squeeze(0) for k, v in out_pocket.items()}
return out_ligand, out_pocket
def init_ligand(self, num_nodes_lig, pocket):
device = pocket['x'].device
n_samples = len(pocket['size'])
lig_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_lig, device)
# only consider upper triangular matrix for symmetry
lig_bonds = torch.stack(torch.where(torch.triu(
lig_mask[:, None] == lig_mask[None, :], diagonal=1)), dim=0)
lig_edge_mask = lig_mask[lig_bonds[0]]
# Sample from Normal distribution in the pocket center
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
z0_x = self.module_x.sample_z0(pocket_com, lig_mask)
z0_h = self.module_h.sample_z0(lig_mask)
z0_e = self.module_e.sample_z0(lig_edge_mask)
return TensorDict(**{
'x': z0_x, 'h': z0_h, 'e': z0_e, 'mask': lig_mask,
'bonds': lig_bonds, 'edge_mask': lig_edge_mask
})
def init_pocket(self, pocket):
if self.flexible_bb:
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
z0_trans = self.module_trans.sample_z0(pocket_com, pocket['mask'])
z0_rot = self.module_rot.sample_z0(pocket['mask'])
# update pocket in-place
pocket.set_frame(z0_trans, z0_rot)
if self.flexible:
z0_chi = self.module_chi.sample_z0(pocket['mask'])
# # DEBUG ##
# z0_chi = torch.stack([data_utils.get_torsion_angles(r, device=self.device) for r in pocket['residues']], dim=0)
# ####
# internal to external coordinates
pocket.set_chi(z0_chi)
if pocket['x'].numel() == 0:
pocket.set_empty_v()
return pocket
def parse_num_nodes_spec(self, batch, spec=None, size_model=None):
if spec == "2d_histogram" or spec is None: # default option
assert "pocket" in batch
num_nodes = self.size_distribution.sample_conditional(
n1=None, n2=batch['pocket']['size'])
# make sure there is at least one potential bond
num_nodes[num_nodes < 2] = 2
elif isinstance(spec, (int, torch.Tensor)):
num_nodes = spec
elif spec == "ground_truth":
assert "ligand" in batch
num_nodes = batch['ligand']['size']
elif spec == "nn_prediction":
assert size_model is not None
assert "pocket" in batch
predictions = size_model.forward(batch['pocket'])
predictions = torch.softmax(predictions, dim=-1)
predictions[:, :5] = 0.0
probabilities = predictions / predictions.sum(dim=1, keepdims=True)
num_nodes = torch.distributions.Categorical(probabilities).sample()
elif isinstance(spec, str) and spec.startswith("uniform"):
# expected format: uniform_low_high
assert "pocket" in batch
left, right = map(int, spec.split("_")[1:])
shape = batch['pocket']['size'].shape
num_nodes = torch.randint(left, right + 1, shape, dtype=torch.long)
else:
raise NotImplementedError(f"Invalid size specification {spec}")
if self.virtual_nodes:
num_nodes += self.add_virtual_max
return num_nodes
@torch.no_grad()
def sample(self, data, n_samples, num_nodes=None, timesteps=None,
guide_log_prob=None, size_model=None, **kwargs):
# TODO: move somewhere else (like collate_fn)
data['pocket'] = Residues(**data['pocket'])
timesteps = self.T_sampling if timesteps is None else timesteps
if len(data['pocket']['x']) > 0:
pocket = data_utils.repeat_items(data['pocket'], n_samples)
else:
pocket = Residues(**{key: value for key, value in data['pocket'].items()})
pocket['name'] = pocket['name'] * n_samples
pocket['size'] = pocket['size'].repeat(n_samples)
pocket['n_bonds'] = pocket['n_bonds'].repeat(n_samples)
_ligand = data_utils.repeat_items(data['ligand'], n_samples)
# _ligand = randomize_tensors(_ligand, exclude_keys=['size', 'name']) # avoid data leakage
batch = {"ligand": _ligand, "pocket": pocket}
num_nodes = self.parse_num_nodes_spec(batch, spec=num_nodes, size_model=size_model)
# Sample from prior
if pocket['x'].numel() > 0:
ligand = self.init_ligand(num_nodes, pocket)
else:
ligand = self.init_ligand(num_nodes, _ligand)
pocket = self.init_pocket(pocket)
# return prior samples
if timesteps == 0:
# Convert into rdmols
rdmols = [build_molecule(coords=m['x'],
atom_types=m['h'].argmax(1),
bonds=m['bonds'],
bond_types=m['e'].argmax(1),
atom_decoder=self.atom_decoder, bond_decoder=self.bond_decoder)
for m in data_utils.split_entity(ligand.detach().cpu(), edge_types={"e", "edge_mask"}, edge_mask=ligand["edge_mask"])]
rdpockets = pocket_to_rdkit(pocket, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index)
return rdmols, rdpockets, _ligand['name']
out_tensors_ligand, out_tensors_pocket = self.simulate(
ligand, pocket, timesteps, 0.0, 1.0,
guide_log_prob=guide_log_prob
)
# Build mol objects
x = out_tensors_ligand['x'].detach().cpu()
ligand_type = out_tensors_ligand['h'].argmax(1).detach().cpu()
edge_type = out_tensors_ligand['e'].argmax(1).detach().cpu()
lig_mask = ligand['mask'].detach().cpu()
lig_bonds = ligand['bonds'].detach().cpu()
lig_edge_mask = ligand['edge_mask'].detach().cpu()
sizes = torch.unique(ligand['mask'], return_counts=True)[1].tolist()
offsets = list(accumulate(sizes[:-1], initial=0))
mol_kwargs = {
'coords': utils.batch_to_list(x, lig_mask),
'atom_types': utils.batch_to_list(ligand_type, lig_mask),
'bonds': utils.batch_to_list_for_indices(lig_bonds, lig_edge_mask, offsets),
'bond_types': utils.batch_to_list(edge_type, lig_edge_mask)
}
if self.predict_confidence:
sigma_x = out_tensors_ligand['sigma_x'].detach().cpu()
entropy_h = out_tensors_ligand['entropy_h'].detach().cpu()
mol_kwargs['atom_props'] = [
{'sigma_x': x[0], 'entropy_h': x[1]}
for x in zip(utils.batch_to_list(sigma_x, lig_mask),
utils.batch_to_list(entropy_h, lig_mask))
]
mol_kwargs = [{k: v[i] for k, v in mol_kwargs.items()}
for i in range(len(mol_kwargs['coords']))]
# Convert into rdmols
rdmols = [build_molecule(
**m, atom_decoder=self.atom_decoder, bond_decoder=self.bond_decoder)
for m in mol_kwargs
]
out_pocket = pocket.copy()
out_pocket['x'] = out_tensors_pocket['x']
out_pocket['v'] = out_tensors_pocket['v']
rdpockets = pocket_to_rdkit(out_pocket, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index)
return rdmols, rdpockets, _ligand['name']
@torch.no_grad()
def sample_chain(self, pocket, keep_frames, num_nodes=None, timesteps=None,
guide_log_prob=None, **kwargs):
# TODO: move somewhere else (like collate_fn)
pocket = Residues(**pocket)
info = {}
timesteps = self.T_sampling if timesteps is None else timesteps
# n_samples = 1
# TODO: get batch_size differently
assert len(pocket['mask'].unique()) <= 1, "sample_chain only supports a single sample"
# # Pocket's initial center of mass
# pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
num_nodes = self.parse_num_nodes_spec(batch={"pocket": pocket}, spec=num_nodes)
# Sample from prior
if pocket['x'].numel() > 0:
ligand = self.init_ligand(num_nodes, pocket)
else:
dummy_pocket = Residues.empty(pocket['x'].device)
ligand = self.init_ligand(num_nodes, dummy_pocket)
pocket = self.init_pocket(pocket)
out_tensors_ligand, out_tensors_pocket = self.simulate(
ligand, pocket, timesteps, 0.0, 1.0, guide_log_prob=guide_log_prob, return_frames=keep_frames)
# chain_lig = utils.reverse_tensor(chain_lig)
# chain_pocket = utils.reverse_tensor(chain_pocket)
# chain_bond = utils.reverse_tensor(chain_bond)
info['traj_displacement_lig'] = torch.norm(out_tensors_ligand['x'][-1] - out_tensors_ligand['x'][0], dim=-1).mean()
info['traj_rms_lig'] = out_tensors_ligand['x'].std(dim=0).mean()
# # Repeat last frame to see final sample better.
# chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)], dim=0)
# chain_pocket = torch.cat([chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# chain_bond = torch.cat([chain_bond, chain_bond[-1:].repeat(10, 1, 1)], dim=0)
# Flatten
assert keep_frames == out_tensors_ligand['x'].size(0) == out_tensors_pocket['x'].size(0)
n_atoms = out_tensors_ligand['x'].size(1)
n_bonds = out_tensors_ligand['e'].size(1)
n_residues = out_tensors_pocket['x'].size(1)
device = out_tensors_ligand['x'].device
def flatten_tensor(chain):
if len(chain.size()) == 3: # l=0 values
return chain.view(-1, chain.size(-1))
elif len(chain.size()) == 4: # vectors
return chain.view(-1, chain.size(-2), chain.size(-1))
else:
warnings.warn(f"Could not flatten frame dimension of tensor with shape {list(chain.size())}")
return chain
out_tensors_ligand_flat = {k: flatten_tensor(chain) for k, chain in out_tensors_ligand.items()}
out_tensors_pocket_flat = {k: flatten_tensor(chain) for k, chain in out_tensors_pocket.items()}
# ligand_flat = chain_lig.view(-1, chain_lig.size(-1))
# ligand_mask_flat = torch.arange(chain_lig.size(0)).repeat_interleave(chain_lig.size(1)).to(chain_lig.device)
ligand_mask_flat = torch.arange(keep_frames).repeat_interleave(n_atoms).to(device)
# # pocket_flat = chain_pocket.view(-1, chain_pocket.size(-1))
# # pocket_v_flat = pocket['v'].repeat(100, 1, 1)
# pocket_flat = chain_pocket.view(-1, chain_pocket.size(-2), chain_pocket.size(-1))
# pocket_mask_flat = torch.arange(chain_pocket.size(0)).repeat_interleave(chain_pocket.size(1)).to(chain_pocket.device)
pocket_mask_flat = torch.arange(keep_frames).repeat_interleave(n_residues).to(device)
# bond_flat = chain_bond.view(-1, chain_bond.size(-1))
# bond_mask_flat = torch.arange(chain_bond.size(0)).repeat_interleave(chain_bond.size(1)).to(chain_bond.device)
bond_mask_flat = torch.arange(keep_frames).repeat_interleave(n_bonds).to(device)
edges_flat = ligand['bonds'].repeat(1, keep_frames)
# # Move generated molecule back to the original pocket position
# pocket_com_after = scatter_mean(pocket_flat[:, 0, :], pocket_mask_flat, dim=0)
# ligand_flat[:, :self.x_dim] += (pocket_com_before - pocket_com_after)[ligand_mask_flat]
#
# # Move pocket back as well (for visualization purposes)
# pocket_flat[:, 0, :] += (pocket_com_before - pocket_com_after)[pocket_mask_flat]
# Build ligands
x = out_tensors_ligand_flat['x'].detach().cpu()
ligand_type = out_tensors_ligand_flat['h'].argmax(1).detach().cpu()
ligand_mask_flat = ligand_mask_flat.detach().cpu()
bond_mask_flat = bond_mask_flat.detach().cpu()
edges_flat = edges_flat.detach().cpu()
edge_type = out_tensors_ligand_flat['e'].argmax(1).detach().cpu()
offsets = torch.zeros(keep_frames, dtype=int) # edges_flat is already zero-based
molecules = list(
zip(utils.batch_to_list(x, ligand_mask_flat),
utils.batch_to_list(ligand_type, ligand_mask_flat),
utils.batch_to_list_for_indices(edges_flat, bond_mask_flat, offsets),
utils.batch_to_list(edge_type, bond_mask_flat)
)
)
# Convert into rdmols
ligand_chain = [build_molecule(
*graph, atom_decoder=self.atom_decoder,
bond_decoder=self.bond_decoder) for graph in molecules
]
# Build pockets
# as long as the pocket does not change during sampling, we can ust
# write it once
out_pocket = {
'x': out_tensors_pocket_flat['x'],
'one_hot': pocket['one_hot'].repeat(keep_frames, 1),
'mask': pocket_mask_flat,
'v': out_tensors_pocket_flat['v'],
'atom_mask': pocket['atom_mask'].repeat(keep_frames, 1),
} if self.flexible else pocket
pocket_chain = pocket_to_rdkit(out_pocket, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index)
return ligand_chain, pocket_chain, info
# def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
# def configure_gradient_clipping(self, optimizer, gradient_clip_val, gradient_clip_algorithm):
def configure_gradient_clipping(self, optimizer, *args, **kwargs):
if not self.clip_grad:
return
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * self.gradnorm_queue.mean() + \
2 * self.gradnorm_queue.std()
# hard upper limit
max_grad_norm = min(max_grad_norm, 10.0)
# Get current grad_norm
params = [p for g in optimizer.param_groups for p in g['params']]
grad_norm = utils.get_grad_norm(params)
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=max_grad_norm,
gradient_clip_algorithm='norm')
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
grad_norm = max_grad_norm
self.gradnorm_queue.add(float(grad_norm)) |