File size: 6,326 Bytes
6e7d4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import sys
import yaml
import torch
import numpy as np
import pickle
from argparse import Namespace

from pathlib import Path

basedir = Path(__file__).resolve().parent.parent
sys.path.append(str(basedir))

from src import utils
from src.utils import dict_to_namespace, namespace_to_dict
from src.analysis.visualization_utils import mols_to_pdbfile, mol_as_pdb
from src.data.data_utils import TensorDict, Residues
from src.data.postprocessing import process_all
from src.model.lightning import DrugFlow
from src.sbdd_metrics.evaluation import compute_all_metrics_drugflow

from tqdm import tqdm
from pdb import set_trace


def combine(base_args, override_args):
    assert not isinstance(base_args, dict)
    assert not isinstance(override_args, dict)

    arg_dict = base_args.__dict__
    for key, value in override_args.__dict__.items():
        if key not in arg_dict or arg_dict[key] is None:  # parameter not provided previously
            print(f"Add parameter {key}: {value}")
            arg_dict[key] = value
        elif isinstance(value, Namespace):
            arg_dict[key] = combine(arg_dict[key], value)
        else:
            print(f"Replace parameter {key}: {arg_dict[key]} -> {value}")
            arg_dict[key] = value
    return base_args


def path_to_str(input_dict):
    for key, value in input_dict.items():
        if isinstance(value, dict):
            input_dict[key] = path_to_str(value)
        else:
            input_dict[key] = str(value) if isinstance(value, Path) else value
    return input_dict


def sample(cfg, model_params, samples_dir, job_id=0, n_jobs=1):
    print('Sampling...')
    model = DrugFlow.load_from_checkpoint(cfg.checkpoint, map_location=cfg.device, strict=False,
                                          **model_params)
    model.setup(stage='fit' if cfg.set == 'train' else cfg.set)
    model.eval().to(cfg.device)

    dataloader = getattr(model, f'{cfg.set}_dataloader')()
    print(f'Real batch size is {dataloader.batch_size * cfg.n_samples}')

    name2count = {}
    for i, data in enumerate(tqdm(dataloader)):
        if i % n_jobs != job_id:
            print(f'Skipping batch {i}')
            continue

        new_data = {
            'ligand': TensorDict(**data['ligand']).to(cfg.device),
            'pocket': Residues(**data['pocket']).to(cfg.device),
        }
        try:
            rdmols, rdpockets, names = model.sample(
                data=new_data,
                n_samples=cfg.n_samples,
                num_nodes=("ground_truth" if cfg.sample_with_ground_truth_size else None)
            )
        except Exception as e:
            if cfg.set == 'train':
                names = data['ligand']['name']
                print(f'Failed to sample for {names}: {e}')
                continue
            else:
                raise e

        for mol, pocket, name in zip(rdmols, rdpockets, names):
            name = name.replace('.sdf', '')
            idx = name2count.setdefault(name, 0)
            output_dir = Path(samples_dir, name)
            output_dir.mkdir(parents=True, exist_ok=True)
            if cfg.postprocess:
                mol = process_all(mol, largest_frag=True, adjust_aromatic_Ns=True, relax_iter=0)

            for prop in mol.GetAtoms()[0].GetPropsAsDict().keys():
                # compute avg uncertainty
                mol.SetDoubleProp(prop, np.mean([a.GetDoubleProp(prop) for a in mol.GetAtoms()]))

                # visualise local differences
                out_pdb_path = Path(output_dir, f'{idx}_ligand_{prop}.pdb')
                mol_as_pdb(mol, out_pdb_path, bfactor=prop)

            out_sdf_path = Path(output_dir, f'{idx}_ligand.sdf')
            out_pdb_path = Path(output_dir, f'{idx}_pocket.pdb')
            utils.write_sdf_file(out_sdf_path, [mol])
            mols_to_pdbfile([pocket], out_pdb_path)

            name2count[name] += 1


def evaluate(cfg, model_params, samples_dir):
    print('Evaluation...')
    data, table_detailed, table_aggregated = compute_all_metrics_drugflow(
        in_dir=samples_dir,
        gnina_path=model_params['train_params'].gnina,
        reduce_path=cfg.reduce,
        reference_smiles_path=Path(model_params['train_params'].datadir, 'train_smiles.npy'),
        n_samples=cfg.n_samples,
        exclude_evaluators=[] if cfg.exclude_evaluators is None else cfg.exclude_evaluators,
    )
    with open(Path(samples_dir, 'metrics_data.pkl'), 'wb') as f: 
        pickle.dump(data, f)
    table_detailed.to_csv(Path(samples_dir, 'metrics_detailed.csv'), index=False)
    table_aggregated.to_csv(Path(samples_dir, 'metrics_aggregated.csv'), index=False)


if __name__ == "__main__":
    p = argparse.ArgumentParser()
    p.add_argument('--config', type=str)
    p.add_argument('--job_id', type=int, default=0, help='Job ID')
    p.add_argument('--n_jobs', type=int, default=1, help='Number of jobs')
    args = p.parse_args()

    with open(args.config, 'r') as f:
        cfg = yaml.safe_load(f)
        cfg = dict_to_namespace(cfg)

    utils.set_deterministic(seed=cfg.seed)
    utils.disable_rdkit_logging()

    model_params = torch.load(cfg.checkpoint, map_location=cfg.device)['hyper_parameters']
    if 'model_args' in cfg:
        ckpt_args = dict_to_namespace(model_params)
        model_params = combine(ckpt_args, cfg.model_args).__dict__

    ckpt_path = Path(cfg.checkpoint)
    ckpt_name = ckpt_path.parts[-1].split('.')[0]
    n_steps = model_params['simulation_params'].n_steps
    samples_dir = Path(cfg.sample_outdir, cfg.set, f'{ckpt_name}_T={n_steps}') or \
                  Path(ckpt_path.parent.parent, 'samples', cfg.set, f'{ckpt_name}_T={n_steps}')
    assert cfg.set in {'val', 'test', 'train'}
    samples_dir.mkdir(parents=True, exist_ok=True)

    # save configs
    with open(Path(samples_dir, 'model_params.yaml'), 'w') as f:
        yaml.dump(path_to_str(namespace_to_dict(model_params)), f)
    with open(Path(samples_dir, 'sampling_params.yaml'), 'w') as f:
        yaml.dump(path_to_str(namespace_to_dict(cfg)), f)

    if cfg.sample:
        sample(cfg, model_params, samples_dir, job_id=args.job_id, n_jobs=args.n_jobs)

    if cfg.evaluate:
        assert args.job_id == 0 and args.n_jobs == 1, 'Evaluation is not parallelised on GPU machines'
        evaluate(cfg, model_params, samples_dir)