File size: 19,122 Bytes
6e7d4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
from typing import Optional
from pathlib import Path
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from torch_scatter import scatter_mean
from src.model.gvp import GVP, GVPModel, LayerNorm, GVPConvLayer
from src.model.gvp_transformer import GVPTransformerModel, GVPTransformerLayer
from src.constants import aa_decoder, residue_bond_encoder
from src.data.dataset import ProcessedLigandPocketDataset
import src.utils as utils
class SizeModel(pl.LightningModule):
def __init__(
self,
max_size,
pocket_representation,
train_params,
loss_params,
eval_params,
predictor_params,
):
super(SizeModel, self).__init__()
self.save_hyperparameters()
assert pocket_representation == "CA+"
self.pocket_representation = pocket_representation
self.type = loss_params.type
assert self.type in {'classifier', 'ordinal', 'regression'}
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.data_transform = None
# Training parameters
self.datadir = train_params.datadir
self.batch_size = train_params.batch_size
self.lr = train_params.lr
self.num_workers = train_params.num_workers
self.clip_grad = train_params.clip_grad
if self.clip_grad:
self.gradnorm_queue = utils.Queue()
# Add large value that will be flushed.
self.gradnorm_queue.add(3000)
# Feature encoders/decoders
self.aa_decoder = aa_decoder
self.residue_bond_encoder = residue_bond_encoder
# Set up the neural network
self.edge_cutoff = predictor_params.edge_cutoff
self.add_nma_feat = predictor_params.normal_modes
self.max_size = max_size
self.n_classes = max_size if self.type == 'ordinal' else max_size + 1
backbone = predictor_params.backbone
model_params = getattr(predictor_params, backbone + '_params')
self.residue_nf = (len(self.aa_decoder), 0)
if self.add_nma_feat:
self.residue_nf = (self.residue_nf[0], self.residue_nf[1] + 5)
out_nf = 1 if self.type == "regression" else self.n_classes
if backbone == 'gvp_transformer':
self.net = SizeGVPTransformer(
node_in_dim=self.residue_nf,
node_h_dim=model_params.node_h_dim,
out_nf=out_nf,
edge_in_nf=len(self.residue_bond_encoder),
edge_h_dim=model_params.edge_h_dim,
num_layers=model_params.n_layers,
dk=model_params.dk,
dv=model_params.dv,
de=model_params.de,
db=model_params.db,
dy=model_params.dy,
attn_heads=model_params.attn_heads,
n_feedforward=model_params.n_feedforward,
drop_rate=model_params.dropout,
reflection_equiv=model_params.reflection_equivariant,
d_max=model_params.d_max,
num_rbf=model_params.num_rbf,
vector_gate=model_params.vector_gate,
attention=model_params.attention,
)
elif backbone == 'gvp_gnn':
self.net = SizeGVPModel(
node_in_dim=self.residue_nf,
node_h_dim=model_params.node_h_dim,
out_nf=out_nf,
edge_in_nf=len(self.residue_bond_encoder),
edge_h_dim=model_params.edge_h_dim,
num_layers=model_params.n_layers,
drop_rate=model_params.dropout,
vector_gate=model_params.vector_gate,
reflection_equiv=model_params.reflection_equivariant,
d_max=model_params.d_max,
num_rbf=model_params.num_rbf,
)
else:
raise NotImplementedError(f"{backbone} is not available")
def configure_optimizers(self):
return torch.optim.AdamW(self.parameters(), lr=self.lr,
amsgrad=True, weight_decay=1e-12)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'train.pt'),
ligand_transform=None, catch_errors=True)
# ligand_transform=self.data_transform, catch_errors=True)
self.val_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'val.pt'), ligand_transform=None)
elif stage == 'test':
self.test_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'test.pt'), ligand_transform=None)
else:
raise NotImplementedError
def train_dataloader(self):
return DataLoader(self.train_dataset, self.batch_size, shuffle=True,
num_workers=self.num_workers,
# collate_fn=self.train_dataset.collate_fn,
collate_fn=partial(self.train_dataset.collate_fn, ligand_transform=self.data_transform),
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, self.batch_size,
shuffle=False, num_workers=self.num_workers,
collate_fn=self.val_dataset.collate_fn,
pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.test_dataset.collate_fn,
pin_memory=True)
def forward(self, pocket):
# x: CA coordinates
x, h, mask = pocket['x'], pocket['one_hot'], pocket['mask']
edges = None
if 'bonds' in pocket:
edges = (pocket['bonds'], pocket['bond_one_hot'])
v = None
if self.add_nma_feat:
v = pocket['nma_vec']
if edges is not None:
# make sure messages are passed both ways
edge_indices = torch.cat(
[edges[0], edges[0].flip(dims=[0])], dim=1)
edge_types = torch.cat([edges[1], edges[1]], dim=0)
edges, edge_feat = self.get_edges(
mask, x, bond_inds=edge_indices, bond_feat=edge_types)
assert torch.all(mask[edges[0]] == mask[edges[1]])
out = self.net(h, x, edges, v=v, batch_mask=mask, edge_attr=edge_feat)
if torch.any(torch.isnan(out)):
# print("NaN detected in network output")
# out[torch.isnan(out)] = 0.0
if self.training:
print("NaN detected in network output")
out[torch.isnan(out)] = 0.0
else:
raise ValueError("NaN detected in network output")
return out
def get_edges(self, batch_mask, coord, bond_inds=None, bond_feat=None, self_edges=False):
# Adjacency matrix
adj = batch_mask[:, None] == batch_mask[None, :]
if self.edge_cutoff is not None:
adj = adj & (torch.cdist(coord, coord) <= self.edge_cutoff)
# Add missing bonds if they got removed
adj[bond_inds[0], bond_inds[1]] = True
if not self_edges:
adj = adj ^ torch.eye(*adj.size(), out=torch.empty_like(adj))
# Feature matrix
nobond_onehot = F.one_hot(torch.tensor(
self.residue_bond_encoder['NOBOND'], device=bond_feat.device),
num_classes=len(self.residue_bond_encoder)).float()
# nobond_emb = self.residue_bond_encoder(nobond_onehot.to(FLOAT_TYPE))
# feat = nobond_emb.repeat(*adj.shape, 1)
feat = nobond_onehot.repeat(*adj.shape, 1)
feat[bond_inds[0], bond_inds[1]] = bond_feat
# Return results
edges = torch.stack(torch.where(adj), dim=0)
edge_feat = feat[edges[0], edges[1]]
return edges, edge_feat
def compute_loss(self, pred_logits, true_size):
if self.type == "classifier":
loss = F.cross_entropy(pred_logits, true_size)
elif self.type == "ordinal":
# each binary variable corresponds to P(x > i), i=0,...,(max_size-1)
binary_labels = true_size.unsqueeze(1) > torch.arange(self.n_classes, device=true_size.device).unsqueeze(0)
loss = F.binary_cross_entropy_with_logits(pred_logits, binary_labels.float())
elif self.type == 'regression':
loss = F.mse_loss(pred_logits.squeeze(), true_size.float())
else:
raise NotImplementedError()
return loss
def max_likelihood(self, pred_logits):
if self.type == "classifier":
pred = pred_logits.argmax(dim=-1)
elif self.type == "ordinal":
# convert probabilities from P(x > i), i=0,...,(max_size-1) to
# P(i), i=0,...,max_size
prop_greater = pred_logits.sigmoid()
pred = torch.zeros((pred_logits.size(0), pred_logits.size(1) + 1),
device=pred_logits.device)
pred[:, 0] = 1 - prop_greater[:, 0]
pred[:, 1:-1] = prop_greater[:, :-1] - prop_greater[:, 1:]
pred[:, -1] = prop_greater[:, -1]
pred = pred.argmax(dim=-1)
elif self.type == 'regression':
pred = torch.clip(torch.round(pred_logits),
min=0, max=self.max_size)
pred = pred.squeeze()
else:
raise NotImplementedError()
return pred
def log_metrics(self, metrics_dict, split, batch_size=None, **kwargs):
for m, value in metrics_dict.items():
self.log(f'{m}/{split}', value, batch_size=batch_size, **kwargs)
def compute_metrics(self, pred_logits, target):
pred = self.max_likelihood(pred_logits)
accuracy = (pred == target).sum() / len(target)
mse = torch.mean((target - pred).float()**2)
acc_window3 = (torch.abs(target - pred) <= 1).sum() / len(target)
acc_window5 = (torch.abs(target - pred) <= 2).sum() / len(target)
return {'accuracy': accuracy,
'mse': mse,
'accuracy_window3': acc_window3,
'accuracy_window5': acc_window5}
def training_step(self, data, *args):
ligand, pocket = data['ligand'], data['pocket']
try:
pred_logits = self.forward(pocket)
true_size = ligand['size']
except RuntimeError as e:
# this is not supported for multi-GPU
if self.trainer.num_devices < 2 and 'out of memory' in str(e):
print('WARNING: ran out of memory, skipping to the next batch')
return None
else:
raise e
loss = self.compute_loss(pred_logits, true_size)
# Compute metrics
metrics = self.compute_metrics(pred_logits, true_size)
self.log_metrics({'loss': loss, **metrics}, 'train',
batch_size=len(true_size), prog_bar=False)
return loss
def validation_step(self, data, *args):
ligand, pocket = data['ligand'], data['pocket']
pred_logits = self.forward(pocket)
true_size = ligand['size']
loss = self.compute_loss(pred_logits, true_size)
# Compute metrics
metrics = self.compute_metrics(pred_logits, true_size)
self.log_metrics({'loss': loss, **metrics}, 'val', batch_size=len(true_size))
return loss
def configure_gradient_clipping(self, optimizer, optimizer_idx,
gradient_clip_val, gradient_clip_algorithm):
if not self.clip_grad:
return
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * self.gradnorm_queue.mean() + \
2 * self.gradnorm_queue.std()
# Get current grad_norm
params = [p for g in optimizer.param_groups for p in g['params']]
grad_norm = utils.get_grad_norm(params)
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=max_grad_norm,
gradient_clip_algorithm='norm')
if float(grad_norm) > max_grad_norm:
self.gradnorm_queue.add(float(max_grad_norm))
else:
self.gradnorm_queue.add(float(grad_norm))
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
class SizeGVPTransformer(GVPTransformerModel):
"""
GVP-Transformer model
:param node_in_dim: node dimension in input graph, scalars or tuple (scalars, vectors)
:param node_h_dim: node dimensions to use in GVP-GNN layers, tuple (s, V)
:param out_nf: node dimensions of output feature, tuple (s, V)
:param edge_in_nf: edge dimension in input graph (scalars)
:param edge_h_dim: edge dimensions to embed to before use in GVP-GNN layers,
tuple (s, V)
:param num_layers: number of GVP-GNN layers
:param drop_rate: rate to use in all dropout layers
:param reflection_equiv: bool, use reflection-sensitive feature based on the
cross product if False
:param d_max:
:param num_rbf:
:param vector_gate: use vector gates in all GVPs
:param attention: can be used to turn off the attention mechanism
"""
def __init__(self, node_in_dim, node_h_dim, out_nf, edge_in_nf,
edge_h_dim, num_layers, dk, dv, de, db, dy,
attn_heads, n_feedforward, drop_rate, reflection_equiv=True,
d_max=20.0, num_rbf=16, vector_gate=False, attention=True):
super(GVPTransformerModel, self).__init__()
self.reflection_equiv = reflection_equiv
self.d_max = d_max
self.num_rbf = num_rbf
# node_in_dim = (node_in_dim, 1)
if not isinstance(node_in_dim, tuple):
node_in_dim = (node_in_dim, 0)
edge_in_dim = (edge_in_nf + 2 * node_in_dim[0] + self.num_rbf, 1)
if not self.reflection_equiv:
edge_in_dim = (edge_in_dim[0], edge_in_dim[1] + 1)
self.W_v = GVP(node_in_dim, node_h_dim, activations=(None, None), vector_gate=vector_gate)
self.W_e = GVP(edge_in_dim, edge_h_dim, activations=(None, None), vector_gate=vector_gate)
self.dy = dy
self.layers = nn.ModuleList(
GVPTransformerLayer(node_h_dim, edge_h_dim, dy, dk, dv, de, db,
attn_heads, n_feedforward=n_feedforward,
drop_rate=drop_rate, vector_gate=vector_gate,
activations=(F.relu, None), attention=attention)
for _ in range(num_layers))
self.W_y_out = GVP(dy, (out_nf, 0), activations=(None, None), vector_gate=vector_gate)
def forward(self, h, x, edge_index, v=None, batch_mask=None, edge_attr=None):
bs = len(batch_mask.unique())
# h_v = (h, x.unsqueeze(-2))
h_v = h if v is None else (h, v)
h_e = self.edge_features(h, x, edge_index, batch_mask, edge_attr)
h_v = self.W_v(h_v)
h_e = self.W_e(h_e)
h_y = (torch.zeros(bs, self.dy[0], device=h.device),
torch.zeros(bs, self.dy[1], 3, device=h.device))
for layer in self.layers:
h_v, h_e, h_y = layer(h_v, edge_index, batch_mask, h_e, h_y)
return self.W_y_out(h_y)
class SizeGVPModel(GVPModel):
"""
GVP-GNN model
inspired by: https://github.com/drorlab/gvp-pytorch/blob/main/gvp/models.py
and: https://github.com/drorlab/gvp-pytorch/blob/82af6b22eaf8311c15733117b0071408d24ed877/gvp/atom3d.py#L115
:param node_in_dim: node dimension in input graph, scalars or tuple (scalars, vectors)
:param node_h_dim: node dimensions to use in GVP-GNN layers, tuple (s, V)
:param out_nf: node dimensions of output feature, tuple (s, V)
:param edge_in_nf: edge dimension in input graph (scalars)
:param edge_h_dim: edge dimensions to embed to before use in GVP-GNN layers,
tuple (s, V)
:param num_layers: number of GVP-GNN layers
:param drop_rate: rate to use in all dropout layers
:param vector_gate: use vector gates in all GVPs
:param reflection_equiv: bool, use reflection-sensitive feature based on the
cross product if False
:param d_max:
:param num_rbf:
:param update_edge_attr: bool, update edge attributes at each layer in a
learnable way
"""
def __init__(self, node_in_dim, node_h_dim, out_nf,
edge_in_nf, edge_h_dim, num_layers=3, drop_rate=0.1,
vector_gate=False, reflection_equiv=True, d_max=20.0,
num_rbf=16):
super(GVPModel, self).__init__()
self.reflection_equiv = reflection_equiv
self.d_max = d_max
self.num_rbf = num_rbf
if not isinstance(node_in_dim, tuple):
node_in_dim = (node_in_dim, 0)
edge_in_dim = (edge_in_nf + 2 * node_in_dim[0] + self.num_rbf, 1)
if not self.reflection_equiv:
edge_in_dim = (edge_in_dim[0], edge_in_dim[1] + 1)
self.W_v = nn.Sequential(
LayerNorm(node_in_dim, learnable_vector_weight=True),
GVP(node_in_dim, node_h_dim, activations=(None, None), vector_gate=vector_gate),
)
self.W_e = nn.Sequential(
LayerNorm(edge_in_dim, learnable_vector_weight=True),
GVP(edge_in_dim, edge_h_dim, activations=(None, None), vector_gate=vector_gate),
)
self.layers = nn.ModuleList(
GVPConvLayer(node_h_dim, edge_h_dim, drop_rate=drop_rate,
update_edge_attr=True, activations=(F.relu, None),
vector_gate=vector_gate, ln_vector_weight=True)
for _ in range(num_layers))
self.W_y_out = nn.Sequential(
# LayerNorm(node_h_dim, learnable_vector_weight=True),
# GVP(node_h_dim, node_h_dim, vector_gate=vector_gate),
LayerNorm(node_h_dim, learnable_vector_weight=True),
GVP(node_h_dim, (out_nf, 0), activations=(None, None), vector_gate=vector_gate),
)
def forward(self, h, x, edge_index, v=None, batch_mask=None, edge_attr=None):
batch_size = len(torch.unique(batch_mask))
h_v = h if v is None else (h, v)
h_e = self.edge_features(h, x, edge_index, batch_mask, edge_attr)
h_v = self.W_v(h_v)
h_e = self.W_e(h_e)
for layer in self.layers:
h_v, h_e = layer(h_v, edge_index, edge_attr=h_e)
# compute graph-level feature
sm = scatter_mean(h_v[0], batch_mask, dim=0, dim_size=batch_size)
vm = scatter_mean(h_v[1], batch_mask, dim=0, dim_size=batch_size)
return self.W_y_out((sm, vm))
|