File size: 6,625 Bytes
6e7d4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
from argparse import Namespace
from pathlib import Path
import warnings

import torch
import pytorch_lightning as pl
import yaml


import sys
basedir = Path(__file__).resolve().parent.parent
sys.path.append(str(basedir))

from src.model.lightning import DrugFlow
from src.model.dpo import DPO
from src.utils import set_deterministic, disable_rdkit_logging, dict_to_namespace, namespace_to_dict


def merge_args_and_yaml(args, config_dict):
    arg_dict = args.__dict__
    for key, value in config_dict.items():
        if key in arg_dict:
            warnings.warn(f"Command line argument '{key}' (value: "
                          f"{arg_dict[key]}) will be overwritten with value "
                          f"{value} provided in the config file.")
        # if isinstance(value, dict):
        #     arg_dict[key] = Namespace(**value)
        # else:
        #     arg_dict[key] = value
        arg_dict[key] = dict_to_namespace(value)

    return args


def merge_configs(config, resume_config):
    for key, value in resume_config.items():
        if isinstance(value, Namespace):
            value = value.__dict__

        if isinstance(value, dict):
            # update dictionaries recursively
            value = merge_configs(config[key], value)

        if key in config and config[key] != value:
            print(f'[CONFIG UPDATE] {key}: {value} -> {config[key]}')
    return config


# ------------------------------------------------------------------------------
# Training
# ______________________________________________________________________________
if __name__ == "__main__":
    p = argparse.ArgumentParser()
    p.add_argument('--config', type=str, required=True)
    p.add_argument('--resume', type=str, default=None)
    p.add_argument('--backoff', action='store_true')
    p.add_argument('--finetune', action='store_true')
    p.add_argument('--debug', action='store_true')
    p.add_argument('--overfit', action='store_true')
    args = p.parse_args()

    set_deterministic(seed=42)
    disable_rdkit_logging()

    with open(args.config, 'r') as f:
        config = yaml.safe_load(f)

    assert 'resume' not in config
    assert not (args.resume is not None and args.backoff)
    config['dpo_mode'] = config.get('dpo_mode', None)
    assert not (config['dpo_mode'] and 'checkpoint' not in config), 'DPO mode requires a reference checkpoint'

    if args.debug:
        config['run_name'] = 'debug'

    out_dir = Path(config['train_params']['logdir'], config['run_name'])
    checkpoints_root_dir = Path(out_dir, 'checkpoints')
    if args.backoff:
        last_checkpoint = Path(checkpoints_root_dir, 'last.ckpt')
        print(f'Checking if there is a checkpoint at: {last_checkpoint}')
        if last_checkpoint.exists():
            print(f'Found existing checkpoint: {last_checkpoint}')
            args.resume = str(last_checkpoint)
        else:
            print(f'Did not find {last_checkpoint}')

    # Get main config
    ckpt_path = None if args.resume is None else Path(args.resume)
    if args.resume is not None and not args.finetune:
        ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
        print(f'Resuming from epoch {ckpt["epoch"]}')
        resume_config = ckpt['hyper_parameters']
        config = merge_configs(config, resume_config)

    args = merge_args_and_yaml(args, config)

    if args.debug:
        print('DEBUG MODE')
        args.wandb_params.mode = 'disabled'
        args.train_params.enable_progress_bar = True
        args.train_params.num_workers = 0

    if args.overfit:
        print('OVERFITTING MODE')

    args.eval_params.outdir = out_dir
    model_class = DPO if args.dpo_mode else DrugFlow
    model_args = {
        'pocket_representation': args.pocket_representation,
        'train_params': args.train_params,
        'loss_params': args.loss_params,
        'eval_params': args.eval_params,
        'predictor_params': args.predictor_params,
        'simulation_params': args.simulation_params,
        'virtual_nodes': args.virtual_nodes,
        'flexible': args.flexible,
        'flexible_bb': args.flexible_bb,
        'debug': args.debug,
        'overfit': args.overfit,
    }
    if args.dpo_mode:
        print('DPO MODE')
        model_args.update({
            'dpo_mode': args.dpo_mode,
            'ref_checkpoint_p': args.checkpoint,
        })
    pl_module = model_class(**model_args)

    resume_logging = False
    if args.finetune:
        resume_logging = 'allow'
    elif args.resume is not None:
        resume_logging = 'must'
    
    logger = pl.loggers.WandbLogger(
        save_dir=args.train_params.logdir,
        project='FlexFlow',
        group=args.wandb_params.group,
        name=args.run_name,
        id=args.run_name,
        resume=resume_logging,
        entity=args.wandb_params.entity,
        mode=args.wandb_params.mode,
    )

    checkpoint_callbacks = [
        pl.callbacks.ModelCheckpoint(
            dirpath=checkpoints_root_dir,
            save_last=True,
            save_on_train_epoch_end=True,
        ),
        pl.callbacks.ModelCheckpoint(
            dirpath=Path(checkpoints_root_dir, 'val_loss'),
            filename="epoch_{epoch:04d}_loss_{loss/val:.3f}",
            monitor="loss/val",
            save_top_k=5,
            mode="min",
            auto_insert_metric_name=False,
        ),
    ]

    # For learning rate logging
    lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval='step')

    default_strategy = 'auto' if pl.__version__ >= '2.0.0' else None
    trainer = pl.Trainer(
        max_epochs=args.train_params.n_epochs,
        logger=logger,
        callbacks=checkpoint_callbacks + [lr_monitor],
        enable_progress_bar=args.train_params.enable_progress_bar,
        check_val_every_n_epoch=args.eval_params.eval_epochs,
        num_sanity_val_steps=args.train_params.num_sanity_val_steps,
        accumulate_grad_batches=args.train_params.accumulate_grad_batches,
        accelerator='gpu' if args.train_params.gpus > 0 else 'cpu',
        devices=args.train_params.gpus if args.train_params.gpus > 0 else 'auto',
        strategy=('ddp_find_unused_parameters_true' if args.train_params.gpus > 1 else default_strategy),
        use_distributed_sampler=False,
    )

    # add all arguments as dictionaries because WandB does not display
    # nested Namespace objects correctly
    logger.experiment.config.update({'as_dict': namespace_to_dict(args)}, allow_val_change=True)

    trainer.fit(model=pl_module, ckpt_path=ckpt_path)

    # # run test set
    # result = trainer.test(ckpt_path='best')