|
|
""" |
|
|
Geometric Vector Perceptron implementation taken from: |
|
|
https://github.com/drorlab/gvp-pytorch/blob/main/gvp/__init__.py |
|
|
""" |
|
|
import copy |
|
|
import warnings |
|
|
|
|
|
import torch, functools |
|
|
from torch import nn |
|
|
import torch.nn.functional as F |
|
|
from torch_geometric.nn import MessagePassing |
|
|
from torch_scatter import scatter_add, scatter_mean |
|
|
|
|
|
|
|
|
def tuple_sum(*args): |
|
|
''' |
|
|
Sums any number of tuples (s, V) elementwise. |
|
|
''' |
|
|
return tuple(map(sum, zip(*args))) |
|
|
|
|
|
|
|
|
def tuple_cat(*args, dim=-1): |
|
|
''' |
|
|
Concatenates any number of tuples (s, V) elementwise. |
|
|
|
|
|
:param dim: dimension along which to concatenate when viewed |
|
|
as the `dim` index for the scalar-channel tensors. |
|
|
This means that `dim=-1` will be applied as |
|
|
`dim=-2` for the vector-channel tensors. |
|
|
''' |
|
|
dim %= len(args[0][0].shape) |
|
|
s_args, v_args = list(zip(*args)) |
|
|
return torch.cat(s_args, dim=dim), torch.cat(v_args, dim=dim) |
|
|
|
|
|
|
|
|
def tuple_index(x, idx): |
|
|
''' |
|
|
Indexes into a tuple (s, V) along the first dimension. |
|
|
|
|
|
:param idx: any object which can be used to index into a `torch.Tensor` |
|
|
''' |
|
|
return x[0][idx], x[1][idx] |
|
|
|
|
|
|
|
|
def randn(n, dims, device="cpu"): |
|
|
''' |
|
|
Returns random tuples (s, V) drawn elementwise from a normal distribution. |
|
|
|
|
|
:param n: number of data points |
|
|
:param dims: tuple of dimensions (n_scalar, n_vector) |
|
|
|
|
|
:return: (s, V) with s.shape = (n, n_scalar) and |
|
|
V.shape = (n, n_vector, 3) |
|
|
''' |
|
|
return torch.randn(n, dims[0], device=device), \ |
|
|
torch.randn(n, dims[1], 3, device=device) |
|
|
|
|
|
|
|
|
def _norm_no_nan(x, axis=-1, keepdims=False, eps=1e-8, sqrt=True): |
|
|
''' |
|
|
L2 norm of tensor clamped above a minimum value `eps`. |
|
|
|
|
|
:param sqrt: if `False`, returns the square of the L2 norm |
|
|
''' |
|
|
out = torch.clamp(torch.sum(torch.square(x), axis, keepdims), min=eps) |
|
|
return torch.sqrt(out) if sqrt else out |
|
|
|
|
|
|
|
|
def _split(x, nv): |
|
|
''' |
|
|
Splits a merged representation of (s, V) back into a tuple. |
|
|
Should be used only with `_merge(s, V)` and only if the tuple |
|
|
representation cannot be used. |
|
|
|
|
|
:param x: the `torch.Tensor` returned from `_merge` |
|
|
:param nv: the number of vector channels in the input to `_merge` |
|
|
''' |
|
|
v = torch.reshape(x[..., -3 * nv:], x.shape[:-1] + (nv, 3)) |
|
|
s = x[..., :-3 * nv] |
|
|
return s, v |
|
|
|
|
|
|
|
|
def _merge(s, v): |
|
|
''' |
|
|
Merges a tuple (s, V) into a single `torch.Tensor`, where the |
|
|
vector channels are flattened and appended to the scalar channels. |
|
|
Should be used only if the tuple representation cannot be used. |
|
|
Use `_split(x, nv)` to reverse. |
|
|
''' |
|
|
v = torch.reshape(v, v.shape[:-2] + (3 * v.shape[-2],)) |
|
|
return torch.cat([s, v], -1) |
|
|
|
|
|
|
|
|
class GVP(nn.Module): |
|
|
''' |
|
|
Geometric Vector Perceptron. See manuscript and README.md |
|
|
for more details. |
|
|
|
|
|
:param in_dims: tuple (n_scalar, n_vector) |
|
|
:param out_dims: tuple (n_scalar, n_vector) |
|
|
:param h_dim: intermediate number of vector channels, optional |
|
|
:param activations: tuple of functions (scalar_act, vector_act) |
|
|
:param vector_gate: whether to use vector gating. |
|
|
(vector_act will be used as sigma^+ in vector gating if `True`) |
|
|
''' |
|
|
|
|
|
def __init__(self, in_dims, out_dims, h_dim=None, |
|
|
activations=(F.relu, torch.sigmoid), vector_gate=False): |
|
|
super(GVP, self).__init__() |
|
|
self.si, self.vi = in_dims |
|
|
self.so, self.vo = out_dims |
|
|
self.vector_gate = vector_gate |
|
|
if self.vi: |
|
|
self.h_dim = h_dim or max(self.vi, self.vo) |
|
|
self.wh = nn.Linear(self.vi, self.h_dim, bias=False) |
|
|
self.ws = nn.Linear(self.h_dim + self.si, self.so) |
|
|
if self.vo: |
|
|
self.wv = nn.Linear(self.h_dim, self.vo, bias=False) |
|
|
if self.vector_gate: self.wsv = nn.Linear(self.so, self.vo) |
|
|
else: |
|
|
self.ws = nn.Linear(self.si, self.so) |
|
|
|
|
|
self.scalar_act, self.vector_act = activations |
|
|
self.dummy_param = nn.Parameter(torch.empty(0)) |
|
|
|
|
|
def forward(self, x): |
|
|
''' |
|
|
:param x: tuple (s, V) of `torch.Tensor`, |
|
|
or (if vectors_in is 0), a single `torch.Tensor` |
|
|
:return: tuple (s, V) of `torch.Tensor`, |
|
|
or (if vectors_out is 0), a single `torch.Tensor` |
|
|
''' |
|
|
if self.vi: |
|
|
s, v = x |
|
|
v = torch.transpose(v, -1, -2) |
|
|
vh = self.wh(v) |
|
|
vn = _norm_no_nan(vh, axis=-2) |
|
|
s = self.ws(torch.cat([s, vn], -1)) |
|
|
if self.vo: |
|
|
v = self.wv(vh) |
|
|
v = torch.transpose(v, -1, -2) |
|
|
if self.vector_gate: |
|
|
if self.vector_act: |
|
|
gate = self.wsv(self.vector_act(s)) |
|
|
else: |
|
|
gate = self.wsv(s) |
|
|
v = v * torch.sigmoid(gate).unsqueeze(-1) |
|
|
elif self.vector_act: |
|
|
v = v * self.vector_act( |
|
|
_norm_no_nan(v, axis=-1, keepdims=True)) |
|
|
else: |
|
|
s = self.ws(x) |
|
|
if self.vo: |
|
|
v = torch.zeros(s.shape[0], self.vo, 3, |
|
|
device=self.dummy_param.device) |
|
|
if self.scalar_act: |
|
|
s = self.scalar_act(s) |
|
|
|
|
|
return (s, v) if self.vo else s |
|
|
|
|
|
|
|
|
class _VDropout(nn.Module): |
|
|
''' |
|
|
Vector channel dropout where the elements of each |
|
|
vector channel are dropped together. |
|
|
''' |
|
|
|
|
|
def __init__(self, drop_rate): |
|
|
super(_VDropout, self).__init__() |
|
|
self.drop_rate = drop_rate |
|
|
self.dummy_param = nn.Parameter(torch.empty(0)) |
|
|
|
|
|
def forward(self, x): |
|
|
''' |
|
|
:param x: `torch.Tensor` corresponding to vector channels |
|
|
''' |
|
|
device = self.dummy_param.device |
|
|
if not self.training: |
|
|
return x |
|
|
mask = torch.bernoulli( |
|
|
(1 - self.drop_rate) * torch.ones(x.shape[:-1], device=device) |
|
|
).unsqueeze(-1) |
|
|
x = mask * x / (1 - self.drop_rate) |
|
|
return x |
|
|
|
|
|
|
|
|
class Dropout(nn.Module): |
|
|
''' |
|
|
Combined dropout for tuples (s, V). |
|
|
Takes tuples (s, V) as input and as output. |
|
|
''' |
|
|
|
|
|
def __init__(self, drop_rate): |
|
|
super(Dropout, self).__init__() |
|
|
self.sdropout = nn.Dropout(drop_rate) |
|
|
self.vdropout = _VDropout(drop_rate) |
|
|
|
|
|
def forward(self, x): |
|
|
''' |
|
|
:param x: tuple (s, V) of `torch.Tensor`, |
|
|
or single `torch.Tensor` |
|
|
(will be assumed to be scalar channels) |
|
|
''' |
|
|
if type(x) is torch.Tensor: |
|
|
return self.sdropout(x) |
|
|
s, v = x |
|
|
return self.sdropout(s), self.vdropout(v) |
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module): |
|
|
''' |
|
|
Combined LayerNorm for tuples (s, V). |
|
|
Takes tuples (s, V) as input and as output. |
|
|
''' |
|
|
|
|
|
def __init__(self, dims, learnable_vector_weight=False): |
|
|
super(LayerNorm, self).__init__() |
|
|
self.s, self.v = dims |
|
|
self.scalar_norm = nn.LayerNorm(self.s) |
|
|
self.vector_norm = VectorLayerNorm(self.v, learnable_vector_weight) \ |
|
|
if self.v > 0 else None |
|
|
|
|
|
def forward(self, x): |
|
|
''' |
|
|
:param x: tuple (s, V) of `torch.Tensor`, |
|
|
or single `torch.Tensor` |
|
|
(will be assumed to be scalar channels) |
|
|
''' |
|
|
if not self.v: |
|
|
return self.scalar_norm(x) |
|
|
s, v = x |
|
|
|
|
|
|
|
|
|
|
|
return self.scalar_norm(s), self.vector_norm(v) |
|
|
|
|
|
|
|
|
class VectorLayerNorm(nn.Module): |
|
|
""" |
|
|
Equivariant normalization of vector-valued features inspired by: |
|
|
Liao, Yi-Lun, and Tess Smidt. |
|
|
"Equiformer: Equivariant graph attention transformer for 3d atomistic graphs." |
|
|
arXiv preprint arXiv:2206.11990 (2022). |
|
|
Section 4.1, "Layer Normalization" |
|
|
""" |
|
|
def __init__(self, n_channels, learnable_weight=True): |
|
|
super(VectorLayerNorm, self).__init__() |
|
|
self.gamma = nn.Parameter(torch.ones(1, n_channels, 1)) \ |
|
|
if learnable_weight else None |
|
|
|
|
|
def forward(self, x): |
|
|
""" |
|
|
Computes LN(x) = ( x / RMS( L2-norm(x) ) ) * gamma |
|
|
:param x: input tensor (n, c, 3) |
|
|
:return: layer normalized vector feature |
|
|
""" |
|
|
norm2 = _norm_no_nan(x, axis=-1, keepdims=True, sqrt=False) |
|
|
rms = torch.sqrt(torch.mean(norm2, dim=-2, keepdim=True)) |
|
|
x = x / rms |
|
|
if self.gamma is not None: |
|
|
x = x * self.gamma |
|
|
return x |
|
|
|
|
|
|
|
|
class GVPConv(MessagePassing): |
|
|
''' |
|
|
Graph convolution / message passing with Geometric Vector Perceptrons. |
|
|
Takes in a graph with node and edge embeddings, |
|
|
and returns new node embeddings. |
|
|
|
|
|
This does NOT do residual updates and pointwise feedforward layers |
|
|
---see `GVPConvLayer`. |
|
|
|
|
|
:param in_dims: input node embedding dimensions (n_scalar, n_vector) |
|
|
:param out_dims: output node embedding dimensions (n_scalar, n_vector) |
|
|
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector) |
|
|
:param n_layers: number of GVPs in the message function |
|
|
:param module_list: preconstructed message function, overrides n_layers |
|
|
:param aggr: should be "add" if some incoming edges are masked, as in |
|
|
a masked autoregressive decoder architecture, otherwise "mean" |
|
|
:param activations: tuple of functions (scalar_act, vector_act) to use in GVPs |
|
|
:param vector_gate: whether to use vector gating. |
|
|
(vector_act will be used as sigma^+ in vector gating if `True`) |
|
|
:param update_edge_attr: whether to compute an updated edge representation |
|
|
''' |
|
|
|
|
|
def __init__(self, in_dims, out_dims, edge_dims, |
|
|
n_layers=3, module_list=None, aggr="mean", |
|
|
activations=(F.relu, torch.sigmoid), vector_gate=False, |
|
|
update_edge_attr=False): |
|
|
super(GVPConv, self).__init__(aggr=aggr) |
|
|
self.si, self.vi = in_dims |
|
|
self.so, self.vo = out_dims |
|
|
self.se, self.ve = edge_dims |
|
|
self.update_edge_attr = update_edge_attr |
|
|
|
|
|
GVP_ = functools.partial(GVP, |
|
|
activations=activations, |
|
|
vector_gate=vector_gate) |
|
|
|
|
|
module_list = module_list or [] |
|
|
if not module_list: |
|
|
if n_layers == 1: |
|
|
module_list.append( |
|
|
GVP_((2 * self.si + self.se, 2 * self.vi + self.ve), |
|
|
(self.so, self.vo), activations=(None, None))) |
|
|
else: |
|
|
module_list.append( |
|
|
GVP_((2 * self.si + self.se, 2 * self.vi + self.ve), |
|
|
out_dims) |
|
|
) |
|
|
for i in range(n_layers - 2): |
|
|
module_list.append(GVP_(out_dims, out_dims)) |
|
|
module_list.append(GVP_(out_dims, out_dims, |
|
|
activations=(None, None))) |
|
|
self.message_func = nn.Sequential(*module_list) |
|
|
|
|
|
self.edge_func = copy.deepcopy(self.message_func) \ |
|
|
if self.update_edge_attr else None |
|
|
|
|
|
def forward(self, x, edge_index, edge_attr): |
|
|
''' |
|
|
:param x: tuple (s, V) of `torch.Tensor` |
|
|
:param edge_index: array of shape [2, n_edges] |
|
|
:param edge_attr: tuple (s, V) of `torch.Tensor` |
|
|
''' |
|
|
x_s, x_v = x |
|
|
message = self.propagate(edge_index, |
|
|
s=x_s, |
|
|
v=x_v.reshape(x_v.shape[0], 3 * x_v.shape[1]), |
|
|
edge_attr=edge_attr) |
|
|
|
|
|
if self.update_edge_attr: |
|
|
s_i, s_j = x_s[edge_index[0]], x_s[edge_index[1]] |
|
|
x_v = x_v.reshape(x_v.shape[0], 3 * x_v.shape[1]) |
|
|
v_i, v_j = x_v[edge_index[0]], x_v[edge_index[1]] |
|
|
|
|
|
edge_out = self.edge_attr(s_i, v_i, s_j, v_j, edge_attr) |
|
|
return _split(message, self.vo), edge_out |
|
|
else: |
|
|
return _split(message, self.vo) |
|
|
|
|
|
def message(self, s_i, v_i, s_j, v_j, edge_attr): |
|
|
v_j = v_j.view(v_j.shape[0], v_j.shape[1] // 3, 3) |
|
|
v_i = v_i.view(v_i.shape[0], v_i.shape[1] // 3, 3) |
|
|
message = tuple_cat((s_j, v_j), edge_attr, (s_i, v_i)) |
|
|
message = self.message_func(message) |
|
|
return _merge(*message) |
|
|
|
|
|
def edge_attr(self, s_i, v_i, s_j, v_j, edge_attr): |
|
|
v_j = v_j.view(v_j.shape[0], v_j.shape[1] // 3, 3) |
|
|
v_i = v_i.view(v_i.shape[0], v_i.shape[1] // 3, 3) |
|
|
message = tuple_cat((s_j, v_j), edge_attr, (s_i, v_i)) |
|
|
return self.edge_func(message) |
|
|
|
|
|
|
|
|
class GVPConvLayer(nn.Module): |
|
|
''' |
|
|
Full graph convolution / message passing layer with |
|
|
Geometric Vector Perceptrons. Residually updates node embeddings with |
|
|
aggregated incoming messages, applies a pointwise feedforward |
|
|
network to node embeddings, and returns updated node embeddings. |
|
|
|
|
|
To only compute the aggregated messages, see `GVPConv`. |
|
|
|
|
|
:param node_dims: node embedding dimensions (n_scalar, n_vector) |
|
|
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector) |
|
|
:param n_message: number of GVPs to use in message function |
|
|
:param n_feedforward: number of GVPs to use in feedforward function |
|
|
:param drop_rate: drop probability in all dropout layers |
|
|
:param autoregressive: if `True`, this `GVPConvLayer` will be used |
|
|
with a different set of input node embeddings for messages |
|
|
where src >= dst |
|
|
:param activations: tuple of functions (scalar_act, vector_act) to use in GVPs |
|
|
:param vector_gate: whether to use vector gating. |
|
|
(vector_act will be used as sigma^+ in vector gating if `True`) |
|
|
:param update_edge_attr: whether to compute an updated edge representation |
|
|
:param ln_vector_weight: whether to include a learnable weight in the vector |
|
|
layer norm |
|
|
''' |
|
|
|
|
|
def __init__(self, node_dims, edge_dims, |
|
|
n_message=3, n_feedforward=2, drop_rate=.1, |
|
|
autoregressive=False, |
|
|
activations=(F.relu, torch.sigmoid), vector_gate=False, |
|
|
update_edge_attr=False, ln_vector_weight=False): |
|
|
|
|
|
super(GVPConvLayer, self).__init__() |
|
|
assert not (update_edge_attr and autoregressive), "Not implemented" |
|
|
self.update_edge_attr = update_edge_attr |
|
|
self.conv = GVPConv(node_dims, node_dims, edge_dims, n_message, |
|
|
aggr="add" if autoregressive else "mean", |
|
|
activations=activations, vector_gate=vector_gate, |
|
|
update_edge_attr=update_edge_attr) |
|
|
GVP_ = functools.partial(GVP, |
|
|
activations=activations, |
|
|
vector_gate=vector_gate) |
|
|
self.norm = nn.ModuleList([LayerNorm(node_dims, ln_vector_weight) |
|
|
for _ in range(2)]) |
|
|
self.dropout = nn.ModuleList([Dropout(drop_rate) for _ in range(2)]) |
|
|
|
|
|
def get_feedforward(n_dims): |
|
|
ff_func = [] |
|
|
if n_feedforward == 1: |
|
|
ff_func.append(GVP_(n_dims, n_dims, activations=(None, None))) |
|
|
else: |
|
|
hid_dims = 4 * n_dims[0], 2 * n_dims[1] |
|
|
ff_func.append(GVP_(n_dims, hid_dims)) |
|
|
for i in range(n_feedforward - 2): |
|
|
ff_func.append(GVP_(hid_dims, hid_dims)) |
|
|
ff_func.append(GVP_(hid_dims, n_dims, activations=(None, None))) |
|
|
return nn.Sequential(*ff_func) |
|
|
|
|
|
self.ff_func = get_feedforward(node_dims) |
|
|
|
|
|
if self.update_edge_attr: |
|
|
self.edge_norm = nn.ModuleList([LayerNorm(edge_dims, ln_vector_weight) |
|
|
for _ in range(2)]) |
|
|
self.edge_dropout = nn.ModuleList([Dropout(drop_rate) for _ in range(2)]) |
|
|
self.edge_ff = get_feedforward(edge_dims) |
|
|
|
|
|
def forward(self, x, edge_index, edge_attr, |
|
|
autoregressive_x=None, node_mask=None): |
|
|
''' |
|
|
:param x: tuple (s, V) of `torch.Tensor` |
|
|
:param edge_index: array of shape [2, n_edges] |
|
|
:param edge_attr: tuple (s, V) of `torch.Tensor` |
|
|
:param autoregressive_x: tuple (s, V) of `torch.Tensor`. |
|
|
If not `None`, will be used as src node embeddings |
|
|
for forming messages where src >= dst. The corrent node |
|
|
embeddings `x` will still be the base of the update and the |
|
|
pointwise feedforward. |
|
|
:param node_mask: array of type `bool` to index into the first |
|
|
dim of node embeddings (s, V). If not `None`, only |
|
|
these nodes will be updated. |
|
|
''' |
|
|
|
|
|
if autoregressive_x is not None: |
|
|
src, dst = edge_index |
|
|
mask = src < dst |
|
|
edge_index_forward = edge_index[:, mask] |
|
|
edge_index_backward = edge_index[:, ~mask] |
|
|
edge_attr_forward = tuple_index(edge_attr, mask) |
|
|
edge_attr_backward = tuple_index(edge_attr, ~mask) |
|
|
|
|
|
dh = tuple_sum( |
|
|
self.conv(x, edge_index_forward, edge_attr_forward), |
|
|
self.conv(autoregressive_x, edge_index_backward, |
|
|
edge_attr_backward) |
|
|
) |
|
|
|
|
|
count = scatter_add(torch.ones_like(dst), dst, |
|
|
dim_size=dh[0].size(0)).clamp(min=1).unsqueeze( |
|
|
-1) |
|
|
|
|
|
dh = dh[0] / count, dh[1] / count.unsqueeze(-1) |
|
|
|
|
|
else: |
|
|
dh = self.conv(x, edge_index, edge_attr) |
|
|
|
|
|
if self.update_edge_attr: |
|
|
dh, de = dh |
|
|
edge_attr = self.edge_norm[0](tuple_sum(edge_attr, self.dropout[0](de))) |
|
|
de = self.edge_ff(edge_attr) |
|
|
edge_attr = self.edge_norm[1](tuple_sum(edge_attr, self.dropout[1](de))) |
|
|
|
|
|
if node_mask is not None: |
|
|
x_ = x |
|
|
x, dh = tuple_index(x, node_mask), tuple_index(dh, node_mask) |
|
|
|
|
|
x = self.norm[0](tuple_sum(x, self.dropout[0](dh))) |
|
|
|
|
|
dh = self.ff_func(x) |
|
|
x = self.norm[1](tuple_sum(x, self.dropout[1](dh))) |
|
|
|
|
|
if node_mask is not None: |
|
|
x_[0][node_mask], x_[1][node_mask] = x[0], x[1] |
|
|
x = x_ |
|
|
return (x, edge_attr) if self.update_edge_attr else x |
|
|
|
|
|
|
|
|
|
|
|
def _normalize(tensor, dim=-1, eps=1e-8): |
|
|
''' |
|
|
Normalizes a `torch.Tensor` along dimension `dim` without `nan`s. |
|
|
''' |
|
|
return torch.nan_to_num( |
|
|
torch.div(tensor, torch.norm(tensor, dim=dim, keepdim=True) + eps)) |
|
|
|
|
|
|
|
|
def _rbf(D, D_min=0., D_max=20., D_count=16, device='cpu'): |
|
|
''' |
|
|
From https://github.com/jingraham/neurips19-graph-protein-design |
|
|
|
|
|
Returns an RBF embedding of `torch.Tensor` `D` along a new axis=-1. |
|
|
That is, if `D` has shape [...dims], then the returned tensor will have |
|
|
shape [...dims, D_count]. |
|
|
''' |
|
|
D_mu = torch.linspace(D_min, D_max, D_count, device=device) |
|
|
D_mu = D_mu.view([1, -1]) |
|
|
D_sigma = (D_max - D_min) / D_count |
|
|
D_expand = torch.unsqueeze(D, -1) |
|
|
|
|
|
RBF = torch.exp(-((D_expand - D_mu) / D_sigma) ** 2) |
|
|
return RBF |
|
|
|
|
|
|
|
|
class GVPModel(torch.nn.Module): |
|
|
""" |
|
|
GVP-GNN model |
|
|
inspired by: https://github.com/drorlab/gvp-pytorch/blob/main/gvp/models.py |
|
|
and: https://github.com/drorlab/gvp-pytorch/blob/82af6b22eaf8311c15733117b0071408d24ed877/gvp/atom3d.py#L115 |
|
|
|
|
|
:param node_in_dim: node dimension in input graph, scalars or tuple (scalars, vectors) |
|
|
:param node_h_dim: node dimensions to use in GVP-GNN layers, tuple (s, V) |
|
|
:param node_out_nf: node dimensions in output graph, tuple (s, V) |
|
|
:param edge_in_nf: edge dimension in input graph (scalars) |
|
|
:param edge_h_dim: edge dimensions to embed to before use in GVP-GNN layers, |
|
|
tuple (s, V) |
|
|
:param edge_out_nf: edge dimensions in output graph, tuple (s, V) |
|
|
:param num_layers: number of GVP-GNN layers |
|
|
:param drop_rate: rate to use in all dropout layers |
|
|
:param vector_gate: use vector gates in all GVPs |
|
|
:param reflection_equiv: bool, use reflection-sensitive feature based on the |
|
|
cross product if False |
|
|
:param d_max: |
|
|
:param num_rbf: |
|
|
:param update_edge_attr: bool, update edge attributes at each layer in a |
|
|
learnable way |
|
|
""" |
|
|
def __init__(self, node_in_dim, node_h_dim, node_out_nf, |
|
|
edge_in_nf, edge_h_dim, edge_out_nf, |
|
|
num_layers=3, drop_rate=0.1, vector_gate=False, |
|
|
reflection_equiv=True, d_max=20.0, num_rbf=16, |
|
|
update_edge_attr=False): |
|
|
|
|
|
super(GVPModel, self).__init__() |
|
|
|
|
|
self.reflection_equiv = reflection_equiv |
|
|
self.update_edge_attr = update_edge_attr |
|
|
self.d_max = d_max |
|
|
self.num_rbf = num_rbf |
|
|
|
|
|
|
|
|
if not isinstance(node_in_dim, tuple): |
|
|
node_in_dim = (node_in_dim, 0) |
|
|
|
|
|
edge_in_dim = (edge_in_nf + 2 * node_in_dim[0] + self.num_rbf, 1) |
|
|
if not self.reflection_equiv: |
|
|
edge_in_dim = (edge_in_dim[0], edge_in_dim[1] + 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.W_v = nn.Sequential( |
|
|
LayerNorm(node_in_dim, learnable_vector_weight=True), |
|
|
GVP(node_in_dim, node_h_dim, activations=(None, None), vector_gate=vector_gate), |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.W_e = nn.Sequential( |
|
|
LayerNorm(edge_in_dim, learnable_vector_weight=True), |
|
|
GVP(edge_in_dim, edge_h_dim, activations=(None, None), vector_gate=vector_gate), |
|
|
) |
|
|
|
|
|
self.layers = nn.ModuleList( |
|
|
GVPConvLayer(node_h_dim, edge_h_dim, drop_rate=drop_rate, |
|
|
update_edge_attr=self.update_edge_attr, |
|
|
activations=(F.relu, None), vector_gate=vector_gate, |
|
|
ln_vector_weight=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for _ in range(num_layers)) |
|
|
|
|
|
|
|
|
|
|
|
self.W_v_out = nn.Sequential( |
|
|
LayerNorm(node_h_dim, learnable_vector_weight=True), |
|
|
GVP(node_h_dim, (node_out_nf, 1), activations=(None, None), vector_gate=vector_gate), |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.W_e_out = nn.Sequential( |
|
|
LayerNorm(edge_h_dim, learnable_vector_weight=True), |
|
|
GVP(edge_h_dim, (edge_out_nf, 0), activations=(None, None), vector_gate=vector_gate) |
|
|
) if self.update_edge_attr else None |
|
|
|
|
|
def edge_features(self, h, x, edge_index, batch_mask=None, edge_attr=None): |
|
|
""" |
|
|
:param h: |
|
|
:param x: |
|
|
:param edge_index: |
|
|
:param batch_mask: |
|
|
:param edge_attr: |
|
|
:return: scalar and vector-valued edge features |
|
|
""" |
|
|
row, col = edge_index |
|
|
coord_diff = x[row] - x[col] |
|
|
dist = coord_diff.norm(dim=-1) |
|
|
rbf = _rbf(dist, D_max=self.d_max, D_count=self.num_rbf, |
|
|
device=x.device) |
|
|
|
|
|
edge_s = torch.cat([h[row], h[col], rbf], dim=1) |
|
|
edge_v = _normalize(coord_diff).unsqueeze(-2) |
|
|
|
|
|
if edge_attr is not None: |
|
|
edge_s = torch.cat([edge_s, edge_attr], dim=1) |
|
|
|
|
|
if not self.reflection_equiv: |
|
|
mean = scatter_mean(x, batch_mask, dim=0, |
|
|
dim_size=batch_mask.max() + 1) |
|
|
row, col = edge_index |
|
|
cross = torch.cross(x[row] - mean[batch_mask[row]], |
|
|
x[col] - mean[batch_mask[col]], dim=1) |
|
|
cross = _normalize(cross).unsqueeze(-2) |
|
|
|
|
|
edge_v = torch.cat([edge_v, cross], dim=-2) |
|
|
|
|
|
return torch.nan_to_num(edge_s), torch.nan_to_num(edge_v) |
|
|
|
|
|
def forward(self, h, x, edge_index, v=None, batch_mask=None, edge_attr=None): |
|
|
|
|
|
|
|
|
h_v = h if v is None else (h, v) |
|
|
h_e = self.edge_features(h, x, edge_index, batch_mask, edge_attr) |
|
|
|
|
|
h_v = self.W_v(h_v) |
|
|
h_e = self.W_e(h_e) |
|
|
|
|
|
for layer in self.layers: |
|
|
h_v = layer(h_v, edge_index, edge_attr=h_e) |
|
|
if self.update_edge_attr: |
|
|
h_v, h_e = h_v |
|
|
|
|
|
|
|
|
|
|
|
h, vel = self.W_v_out(h_v) |
|
|
|
|
|
|
|
|
if self.update_edge_attr: |
|
|
edge_attr = self.W_e_out(h_e) |
|
|
|
|
|
|
|
|
return h, vel.squeeze(-2), edge_attr |
|
|
|