DrugFlow / src /model /loss_utils.py
mority's picture
Upload 53 files
6e7d4ba verified
import torch
from torch_scatter import scatter_add, scatter_mean
from src.constants import atom_decoder, vdw_radii
_vdw_radii = {**vdw_radii}
_vdw_radii['NH'] = vdw_radii['N']
_vdw_radii['N+'] = vdw_radii['N']
_vdw_radii['O-'] = vdw_radii['O']
_vdw_radii['NOATOM'] = 0
vdw_radii_array = torch.tensor([_vdw_radii[a] for a in atom_decoder])
def clash_loss(ligand_coord, ligand_types, ligand_mask, pocket_coord,
pocket_types, pocket_mask):
"""
Computes a clash loss that penalizes interatomic distances smaller than the
sum of van der Waals radii between atoms.
"""
ligand_radii = vdw_radii_array[ligand_types].to(ligand_coord.device)
pocket_radii = vdw_radii_array[pocket_types].to(pocket_coord.device)
dist = torch.sqrt(torch.sum((ligand_coord[:, None, :] - pocket_coord[None, :, :]) ** 2, dim=-1))
# dist[ligand_mask[:, None] != pocket_mask[None, :]] = float('inf')
# compute linearly decreasing penalty
# penalty = max(1 - 1/sum_vdw * d, 0)
sum_vdw = ligand_radii[:, None] + pocket_radii[None, :]
loss = torch.clamp(1 - dist / sum_vdw, min=0.0) # (n_ligand, n_pocket)
loss = scatter_add(loss, pocket_mask, dim=1)
loss = scatter_mean(loss, ligand_mask, dim=0)
loss = loss.diag()
# # DEBUG (non-differentiable version)
# dist = torch.sqrt(torch.sum((ligand_coord[:, None, :] - pocket_coord[None, :, :]) ** 2, dim=-1))
# dist[ligand_mask[:, None] != pocket_mask[None, :]] = float('inf')
# _loss = torch.clamp(1 - dist / sum_vdw, min=0.0) # (n_ligand, n_pocket)
# _loss = _loss.sum(dim=-1)
# _loss = scatter_mean(_loss, ligand_mask, dim=0)
# assert torch.allclose(loss, _loss)
return loss
class TimestepSampler:
def __init__(self, type='uniform', lowest_t=1, highest_t=500):
assert type in {'uniform', 'sigmoid'}
self.type = type
self.lowest_t = lowest_t
self.highest_t = highest_t
def __call__(self, n, device=None):
if self.type == 'uniform':
t_int = torch.randint(self.lowest_t, self.highest_t + 1,
size=(n, 1), device=device)
elif self.type == 'sigmoid':
weight_fun = lambda t: 1.45 * torch.sigmoid(-t * 10 / self.highest_t + 5) + 0.05
possible_ts = torch.arange(self.lowest_t, self.highest_t + 1, device=device)
weights = weight_fun(possible_ts)
weights = weights / weights.sum()
t_int = possible_ts[torch.multinomial(weights, n, replacement=True)].unsqueeze(-1)
return t_int.float()
class TimestepWeights:
def __init__(self, weight_type, a, b):
if weight_type != 'sigmoid':
raise NotImplementedError("Only sigmoidal loss weighting is available.")
# self.weight_fn = lambda t: a * torch.sigmoid((-t + 0.5) * b) + (1 - a / 2)
self.weight_fn = lambda t: a * torch.sigmoid((t - 0.5) * b) + (1 - a / 2)
def __call__(self, t_array):
# normalized t \in [0, 1]
# return self.weight_fn(1 - t_array)
return self.weight_fn(t_array)