import subprocess import numpy as np import tempfile from pathlib import Path from tqdm import tqdm from rdkit import Chem, DataStructs from rdkit.Chem import AllChem from rdkit.Chem import Descriptors, Crippen, Lipinski, QED from rdkit.Chem import AtomKekulizeException, AtomValenceException, \ KekulizeException, MolSanitizeException from src.analysis.SA_Score.sascorer import calculateScore from src.utils import write_sdf_file from copy import deepcopy from pdb import set_trace class CategoricalDistribution: EPS = 1e-10 def __init__(self, histogram_dict, mapping): histogram = np.zeros(len(mapping)) for k, v in histogram_dict.items(): histogram[mapping[k]] = v # Normalize histogram self.p = histogram / histogram.sum() self.mapping = deepcopy(mapping) def kl_divergence(self, other_sample): sample_histogram = np.zeros(len(self.mapping)) for x in other_sample: # sample_histogram[self.mapping[x]] += 1 sample_histogram[x] += 1 # Normalize q = sample_histogram / sample_histogram.sum() return -np.sum(self.p * np.log(q / (self.p + self.EPS) + self.EPS)) def check_mol(rdmol): """ See also: https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization """ if rdmol is None: return 'is_none' _rdmol = Chem.Mol(rdmol) try: Chem.SanitizeMol(_rdmol) return 'valid' except ValueError as e: assert isinstance(e, MolSanitizeException) return type(e).__name__ def validity_analysis(rdmol_list): """ For explanations, see: https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization """ result = { 'AtomValenceException': 0, # atoms in higher-than-allowed valence states 'AtomKekulizeException': 0, 'KekulizeException': 0, # ring cannot be kekulized or aromatic bonds found outside of rings 'other': 0, 'valid': 0 } for rdmol in rdmol_list: flag = check_mol(rdmol) try: result[flag] += 1 except KeyError: result['other'] += 1 assert sum(result.values()) == len(rdmol_list) return result class MoleculeValidity: def __init__(self, connectivity_thresh=1.0): self.connectivity_thresh = connectivity_thresh def compute_validity(self, generated): """ generated: list of RDKit molecules. """ if len(generated) < 1: return [], 0.0 # Return copies of the valid molecules valid = [Chem.Mol(mol) for mol in generated if check_mol(mol) == 'valid'] return valid, len(valid) / len(generated) def compute_connectivity(self, valid): """ Consider molecule connected if its largest fragment contains at least % of all atoms. :param valid: list of valid RDKit molecules """ if len(valid) < 1: return [], 0.0 for mol in valid: Chem.SanitizeMol(mol) # all molecules should be valid connected = [] for mol in valid: if mol.GetNumAtoms() < 1: continue try: mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True) except MolSanitizeException as e: print('Error while computing connectivity:', e) continue largest_frag = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms()) if largest_frag.GetNumAtoms() / mol.GetNumAtoms() >= self.connectivity_thresh: connected.append(largest_frag) return connected, len(connected) / len(valid) def __call__(self, rdmols, verbose=False): """ :param rdmols: list of RDKit molecules """ results = {} results['n_total'] = len(rdmols) valid, validity = self.compute_validity(rdmols) results['n_valid'] = len(valid) results['validity'] = validity connected, connectivity = self.compute_connectivity(valid) results['n_connected'] = len(connected) results['connectivity'] = connectivity results['valid_and_connected'] = results['n_connected'] / results['n_total'] if verbose: print(f"Validity over {results['n_total']} molecules: {validity * 100 :.2f}%") print(f"Connectivity over {results['n_valid']} valid molecules: {connectivity * 100 :.2f}%") return results class MolecularMetrics: def __init__(self, connectivity_thresh=1.0): self.connectivity_thresh = connectivity_thresh @staticmethod def is_valid(rdmol): if rdmol.GetNumAtoms() < 1: return False _mol = Chem.Mol(rdmol) try: Chem.SanitizeMol(_mol) except ValueError: return False return True def is_connected(self, rdmol): if rdmol.GetNumAtoms() < 1: return False mol_frags = Chem.rdmolops.GetMolFrags(rdmol, asMols=True) largest_frag = max(mol_frags, default=rdmol, key=lambda m: m.GetNumAtoms()) if largest_frag.GetNumAtoms() / rdmol.GetNumAtoms() >= self.connectivity_thresh: return True else: return False @staticmethod def calculate_qed(rdmol): return QED.qed(rdmol) @staticmethod def calculate_sa(rdmol): sa = calculateScore(rdmol) return sa @staticmethod def calculate_logp(rdmol): return Crippen.MolLogP(rdmol) @staticmethod def calculate_lipinski(rdmol): rule_1 = Descriptors.ExactMolWt(rdmol) < 500 rule_2 = Lipinski.NumHDonors(rdmol) <= 5 rule_3 = Lipinski.NumHAcceptors(rdmol) <= 10 rule_4 = (logp := Crippen.MolLogP(rdmol) >= -2) & (logp <= 5) rule_5 = Chem.rdMolDescriptors.CalcNumRotatableBonds(rdmol) <= 10 return np.sum([int(a) for a in [rule_1, rule_2, rule_3, rule_4, rule_5]]) def __call__(self, rdmol): valid = self.is_valid(rdmol) if valid: Chem.SanitizeMol(rdmol) connected = None if not valid else self.is_connected(rdmol) qed = None if not valid else self.calculate_qed(rdmol) sa = None if not valid else self.calculate_sa(rdmol) logp = None if not valid else self.calculate_logp(rdmol) lipinski = None if not valid else self.calculate_lipinski(rdmol) return { 'valid': valid, 'connected': connected, 'qed': qed, 'sa': sa, 'logp': logp, 'lipinski': lipinski } class Diversity: @staticmethod def similarity(fp1, fp2): return DataStructs.TanimotoSimilarity(fp1, fp2) def get_fingerprint(self, mol): # fp = AllChem.GetMorganFingerprintAsBitVect( # mol, 2, nBits=2048, useChirality=False) fp = Chem.RDKFingerprint(mol) return fp def __call__(self, pocket_mols): if len(pocket_mols) < 2: return 0.0 pocket_fps = [self.get_fingerprint(m) for m in pocket_mols] div = 0 total = 0 for i in range(len(pocket_fps)): for j in range(i + 1, len(pocket_fps)): div += 1 - self.similarity(pocket_fps[i], pocket_fps[j]) total += 1 return div / total class MoleculeUniqueness: def __call__(self, smiles_list): """ smiles_list: list of SMILES strings. """ if len(smiles_list) < 1: return 0.0 return len(set(smiles_list)) / len(smiles_list) class MoleculeNovelty: def __init__(self, reference_smiles): """ :param reference_smiles: list of SMILES strings """ self.reference_smiles = set(reference_smiles) def __call__(self, smiles_list): if len(smiles_list) < 1: return 0.0 novel = [smi for smi in smiles_list if smi not in self.reference_smiles] return len(novel) / len(smiles_list) class MolecularProperties: @staticmethod def calculate_qed(rdmol): return QED.qed(rdmol) @staticmethod def calculate_sa(rdmol): sa = calculateScore(rdmol) # return round((10 - sa) / 9, 2) # from pocket2mol return sa @staticmethod def calculate_logp(rdmol): return Crippen.MolLogP(rdmol) @staticmethod def calculate_lipinski(rdmol): rule_1 = Descriptors.ExactMolWt(rdmol) < 500 rule_2 = Lipinski.NumHDonors(rdmol) <= 5 rule_3 = Lipinski.NumHAcceptors(rdmol) <= 10 rule_4 = (logp := Crippen.MolLogP(rdmol) >= -2) & (logp <= 5) rule_5 = Chem.rdMolDescriptors.CalcNumRotatableBonds(rdmol) <= 10 return np.sum([int(a) for a in [rule_1, rule_2, rule_3, rule_4, rule_5]]) @classmethod def calculate_diversity(cls, pocket_mols): if len(pocket_mols) < 2: return 0.0 div = 0 total = 0 for i in range(len(pocket_mols)): for j in range(i + 1, len(pocket_mols)): div += 1 - cls.similarity(pocket_mols[i], pocket_mols[j]) total += 1 return div / total @staticmethod def similarity(mol_a, mol_b): # fp1 = AllChem.GetMorganFingerprintAsBitVect( # mol_a, 2, nBits=2048, useChirality=False) # fp2 = AllChem.GetMorganFingerprintAsBitVect( # mol_b, 2, nBits=2048, useChirality=False) fp1 = Chem.RDKFingerprint(mol_a) fp2 = Chem.RDKFingerprint(mol_b) return DataStructs.TanimotoSimilarity(fp1, fp2) def evaluate_pockets(self, pocket_rdmols, verbose=False): """ Run full evaluation Args: pocket_rdmols: list of lists, the inner list contains all RDKit molecules generated for a pocket Returns: QED, SA, LogP, Lipinski (per molecule), and Diversity (per pocket) """ for pocket in pocket_rdmols: for mol in pocket: Chem.SanitizeMol(mol) # only evaluate valid molecules all_qed = [] all_sa = [] all_logp = [] all_lipinski = [] per_pocket_diversity = [] for pocket in tqdm(pocket_rdmols): all_qed.append([self.calculate_qed(mol) for mol in pocket]) all_sa.append([self.calculate_sa(mol) for mol in pocket]) all_logp.append([self.calculate_logp(mol) for mol in pocket]) all_lipinski.append([self.calculate_lipinski(mol) for mol in pocket]) per_pocket_diversity.append(self.calculate_diversity(pocket)) qed_flattened = [x for px in all_qed for x in px] sa_flattened = [x for px in all_sa for x in px] logp_flattened = [x for px in all_logp for x in px] lipinski_flattened = [x for px in all_lipinski for x in px] if verbose: print(f"{sum([len(p) for p in pocket_rdmols])} molecules from " f"{len(pocket_rdmols)} pockets evaluated.") print(f"QED: {np.mean(qed_flattened):.3f} \pm {np.std(qed_flattened):.2f}") print(f"SA: {np.mean(sa_flattened):.3f} \pm {np.std(sa_flattened):.2f}") print(f"LogP: {np.mean(logp_flattened):.3f} \pm {np.std(logp_flattened):.2f}") print(f"Lipinski: {np.mean(lipinski_flattened):.3f} \pm {np.std(lipinski_flattened):.2f}") print(f"Diversity: {np.mean(per_pocket_diversity):.3f} \pm {np.std(per_pocket_diversity):.2f}") return all_qed, all_sa, all_logp, all_lipinski, per_pocket_diversity def __call__(self, rdmols): """ Run full evaluation and return mean of each property Args: rdmols: list of RDKit molecules Returns: Dictionary with mean QED, SA, LogP, Lipinski, and Diversity values """ if len(rdmols) < 1: return {'QED': 0.0, 'SA': 0.0, 'LogP': 0.0, 'Lipinski': 0.0, 'Diversity': 0.0} _rdmols = [] for mol in rdmols: try: Chem.SanitizeMol(mol) # only evaluate valid molecules _rdmols.append(mol) except ValueError as e: print("Tried to analyze invalid molecule") rdmols = _rdmols qed = np.mean([self.calculate_qed(mol) for mol in rdmols]) sa = np.mean([self.calculate_sa(mol) for mol in rdmols]) logp = np.mean([self.calculate_logp(mol) for mol in rdmols]) lipinski = np.mean([self.calculate_lipinski(mol) for mol in rdmols]) diversity = self.calculate_diversity(rdmols) return {'QED': qed, 'SA': sa, 'LogP': logp, 'Lipinski': lipinski, 'Diversity': diversity} def compute_gnina_scores(ligands, receptors, gnina): metrics = ['minimizedAffinity', 'minimizedRMSD', 'CNNscore', 'CNNaffinity', 'CNN_VS', 'CNNaffinity_variance'] out = {m: [] for m in metrics} with tempfile.TemporaryDirectory() as tmpdir: for ligand, receptor in zip(tqdm(ligands, desc='Docking'), receptors): in_ligand_path = Path(tmpdir, 'in_ligand.sdf') out_ligand_path = Path(tmpdir, 'out_ligand.sdf') receptor_path = Path(tmpdir, 'receptor.pdb') write_sdf_file(in_ligand_path, [ligand], catch_errors=True) Chem.MolToPDBFile(receptor, str(receptor_path)) if ( (not in_ligand_path.exists()) or (not receptor_path.exists()) or in_ligand_path.read_text() == '' or receptor_path.read_text() == '' ): continue cmd = ( f'{gnina} -r {receptor_path} -l {in_ligand_path} ' f'--minimize --seed 42 -o {out_ligand_path} --no_gpu 1> /dev/null' ) subprocess.run(cmd, shell=True) if not out_ligand_path.exists() or out_ligand_path.read_text() == '': continue mol = Chem.SDMolSupplier(str(out_ligand_path), sanitize=False)[0] for metric in metrics: out[metric].append(float(mol.GetProp(metric))) for metric in metrics: out[metric] = sum(out[metric]) / len(out[metric]) if len(out[metric]) > 0 else 0 return out def legacy_clash_score(rdmol1, rdmol2=None, margin=0.75): """ Computes a clash score as the number of atoms that have at least one clash divided by the number of atoms in the molecule. INTERMOLECULAR CLASH SCORE If rdmol2 is provided, the score is the percentage of atoms in rdmol1 that have at least one clash with rdmol2. We define a clash if two atoms are closer than "margin times the sum of their van der Waals radii". INTRAMOLECULAR CLASH SCORE If rdmol2 is not provided, the score is the percentage of atoms in rdmol1 that have at least one clash with other atoms in rdmol1. In this case, a clash is defined by margin times the atoms' smallest covalent radii (among single, double and triple bond radii). This is done so that this function is applicable even if no connectivity information is available. """ # source: https://en.wikipedia.org/wiki/Van_der_Waals_radius vdw_radii = {'N': 1.55, 'O': 1.52, 'C': 1.70, 'H': 1.10, 'S': 1.80, 'P': 1.80, 'Se': 1.90, 'K': 2.75, 'Na': 2.27, 'Mg': 1.73, 'Zn': 1.39, 'B': 1.92, 'Br': 1.85, 'Cl': 1.75, 'I': 1.98, 'F': 1.47} # https://en.wikipedia.org/wiki/Covalent_radius#Radii_for_multiple_bonds covalent_radii = {'H': 0.32, 'C': 0.60, 'N': 0.54, 'O': 0.53, 'F': 0.53, 'B': 0.73, 'Al': 1.11, 'Si': 1.02, 'P': 0.94, 'S': 0.94, 'Cl': 0.93, 'As': 1.06, 'Br': 1.09, 'I': 1.25, 'Hg': 1.33, 'Bi': 1.35} coord1 = rdmol1.GetConformer().GetPositions() if rdmol2 is None: radii1 = np.array([covalent_radii[a.GetSymbol()] for a in rdmol1.GetAtoms()]) assert coord1.shape[0] == radii1.shape[0] dist = np.sqrt(np.sum((coord1[:, None, :] - coord1[None, :, :]) ** 2, axis=-1)) np.fill_diagonal(dist, np.inf) clashes = dist < margin * (radii1[:, None] + radii1[None, :]) else: coord2 = rdmol2.GetConformer().GetPositions() radii1 = np.array([vdw_radii[a.GetSymbol()] for a in rdmol1.GetAtoms()]) assert coord1.shape[0] == radii1.shape[0] radii2 = np.array([vdw_radii[a.GetSymbol()] for a in rdmol2.GetAtoms()]) assert coord2.shape[0] == radii2.shape[0] dist = np.sqrt(np.sum((coord1[:, None, :] - coord2[None, :, :]) ** 2, axis=-1)) clashes = dist < margin * (radii1[:, None] + radii2[None, :]) clashes = np.any(clashes, axis=1) return np.mean(clashes) def clash_score(rdmol1, rdmol2=None, margin=0.75, ignore={'H'}): """ Computes a clash score as the number of atoms that have at least one clash divided by the number of atoms in the molecule. INTERMOLECULAR CLASH SCORE If rdmol2 is provided, the score is the percentage of atoms in rdmol1 that have at least one clash with rdmol2. We define a clash if two atoms are closer than "margin times the sum of their van der Waals radii". INTRAMOLECULAR CLASH SCORE If rdmol2 is not provided, the score is the percentage of atoms in rdmol1 that have at least one clash with other atoms in rdmol1. In this case, a clash is defined by margin times the atoms' smallest covalent radii (among single, double and triple bond radii). This is done so that this function is applicable even if no connectivity information is available. """ intramolecular = rdmol2 is None _periodic_table = AllChem.GetPeriodicTable() def _coord_and_radii(rdmol): coord = rdmol.GetConformer().GetPositions() radii = np.array([_get_radius(a.GetSymbol()) for a in rdmol.GetAtoms()]) mask = np.array([a.GetSymbol() not in ignore for a in rdmol.GetAtoms()]) coord = coord[mask] radii = radii[mask] assert coord.shape[0] == radii.shape[0] return coord, radii # INTRAMOLECULAR CLASH SCORE if intramolecular: rdmol2 = rdmol1 _get_radius = _periodic_table.GetRcovalent # covalent radii # INTERMOLECULAR CLASH SCORE else: _get_radius = _periodic_table.GetRvdw # vdW radii coord1, radii1 = _coord_and_radii(rdmol1) coord2, radii2 = _coord_and_radii(rdmol2) dist = np.sqrt(np.sum((coord1[:, None, :] - coord2[None, :, :]) ** 2, axis=-1)) if intramolecular: np.fill_diagonal(dist, np.inf) clashes = dist < margin * (radii1[:, None] + radii2[None, :]) clashes = np.any(clashes, axis=1) return np.mean(clashes)