File size: 10,014 Bytes
7ce0107
 
 
 
 
 
 
 
 
 
6418137
7ce0107
 
 
dd05f56
 
 
 
7ce0107
 
 
6418137
dd05f56
 
7ce0107
6418137
7ce0107
dd05f56
 
 
 
 
7ce0107
 
 
dd05f56
7ce0107
 
 
 
dd05f56
7ce0107
 
 
 
dd05f56
7ce0107
 
 
 
dd05f56
7ce0107
 
 
 
 
 
 
 
 
 
 
 
 
dd05f56
7ce0107
 
 
 
 
dd05f56
 
7ce0107
 
 
dd05f56
 
 
 
 
7ce0107
 
dd05f56
7ce0107
 
 
 
 
 
 
 
 
 
 
 
dd05f56
 
 
 
 
 
 
7ce0107
dd05f56
 
7ce0107
dd05f56
7ce0107
dd05f56
 
 
7ce0107
 
 
dd05f56
 
7ce0107
 
 
 
dd05f56
 
 
 
 
 
7ce0107
dd05f56
 
7ce0107
 
 
 
 
 
 
 
 
 
 
 
 
dd05f56
7ce0107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05f56
7ce0107
dd05f56
 
7ce0107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05f56
7ce0107
dd05f56
 
7ce0107
 
 
 
dd05f56
7ce0107
 
 
 
dd05f56
7ce0107
 
 
 
dd05f56
7ce0107
dd05f56
 
 
 
 
 
7ce0107
 
 
dd05f56
7ce0107
 
 
 
dd05f56
7ce0107
 
 
 
 
dd05f56
7ce0107
 
 
 
dd05f56
7ce0107
dd05f56
7ce0107
dd05f56
 
 
7ce0107
6418137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05f56
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- UI
- UI-UG
- MLLM
- arxiv:2509.24361

---

<div align="center">

# 🎯 UI-UG: A Unified MLLM for UI Understanding and Generation


[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://www.apache.org/licenses/LICENSE-2.0)
[![Paper](https://img.shields.io/badge/paper-arxiv-red.svg)](https://arxiv.org/abs/2509.24361)
[![Hugging Face Model](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Model-yellow.svg)](https://huggingface.co/neovateai/UI-UG-7B)
[![GitHub Repository](https://img.shields.io/badge/GitHub-Repository-181717.svg?logo=github)](https://github.com/neovateai/UI-UG)

[**πŸ“– Paper**](https://arxiv.org/abs/2509.24361) | [**πŸ€— Model**](https://huggingface.co/neovateai/UI-UG-7B) | [**πŸš€ Quick Start**](#-quick-start) | [**πŸ“Š Evaluation**](#-evaluation) | [**πŸ“„ License**](#-license)

</div>

## 🌟 Overview

UI-UG (A Unified MLLM for UI Understanding and Generation) is a multimodal large model that simultaneously supports both UI understanding and UI generation. It supports various tasks including referring, grounding, captioning and generation.

<div align="center">
  <img src="https://mdn.alipayobjects.com/huamei_v87pyo/afts/img/A*zS0OS4ygszoAAAAAYaAAAAgAepd5AQ/original" alt="UI-UG Model Demo Overview" width="900px">
  <p><em>Figure 1: Overview of UI-UG. The workflow includes 1) Data preparation (UI image collection + element detection + DSL generation); 2) Two-stage training: SFT with VQA dataset, then RL optimization using GRPO and DPO for each task. The model supports UI understanding tasks (referring and grounding) and enables both offline and real-time UI generation.</em></p>
</div>

## πŸš€ Core Features

### πŸ” 1. UI Description Generation (Referring)
- **Element Description**: Automatically generate element descriptions based on coordinate regions
- **Semantic Understanding**: Understand the function, style, and interaction meaning of UI elements
- **Multi-dimensional Analysis**: Include text, color, clickability, and other attributes

### πŸ“ 2. UI Element Detection (Grounding)
- **Object Detection**: Automatically identify and locate various UI elements in interfaces
- **Classification**: Support for 20+ categories including text, button, icon, image, etc.
- **Coordinate Annotation**: Precisely generate bounding box coordinates for elements

### 🎨 3. UI Code Generation (Generation)
- **DSL Generation**: Generate structured DSL code from requirement descriptions
- **Mock Data**: Automatically generate accompanying mock data
- **Multi-language Support**: Support for generating UI code from Chinese and English descriptions

## πŸ› οΈ Quick Start

```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import smart_resize, process_vision_info
import torch
from PIL import Image
import re

# Configuration
IMAGE_FACTOR = 28
MIN_PIXELS = 64 * 28 * 28
MAX_PIXELS = 1280 * 28 * 28
MAX_TOKENS = 8192

# Load model
model_path = "neovateai/UI-UG-7B"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    model_path, torch_dtype=torch.float16, device_map="auto"
)
processor = AutoProcessor.from_pretrained(
    model_path, 
    min_pixels=MIN_PIXELS, 
    max_pixels=MAX_PIXELS
)

def llm_inference(messages):
    """Unified inference function"""
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to(model.device)
    
    generated_ids = model.generate(
        **inputs, 
        max_new_tokens=MAX_TOKENS, 
        do_sample=False
    )
    
    generated_ids_trimmed = [
        out_ids[len(in_ids):] 
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    
    output_text = processor.batch_decode(
        generated_ids_trimmed, 
        skip_special_tokens=True, 
        clean_up_tokenization_spaces=False
    )
    return output_text[0]

# Load image
image_path = "figures/alipay_demo.png"
original_image = Image.open(image_path)
original_width, original_height = original_image.size

# Calculate resize dimensions
resized_height, resized_width = smart_resize(
    original_height, original_width, IMAGE_FACTOR, MIN_PIXELS, MAX_PIXELS
)
```

### πŸ“Š Task Examples

#### 1️⃣ Referring Task: Describe element by coordinates
```python
# Scale coordinates from original to resized dimensions
def scale_coordinates(original_coords, original_size, resized_size):
    orig_x1, orig_y1, orig_x2, orig_y2 = original_coords
    orig_w, orig_h = original_size
    new_w, new_h = resized_size
    
    scaled_x1 = int(orig_x1 * new_w / orig_w)
    scaled_y1 = int(orig_y1 * new_h / orig_h)
    scaled_x2 = int(orig_x2 * new_w / orig_w)
    scaled_y2 = int(orig_y2 * new_h / orig_h)
    
    return f"({scaled_x1}, {scaled_y1}),({scaled_x2}, {scaled_y2})"

# Example usage
original_coords_str = "(600, 623),(907, 634)"
# Parse original coordinates
coord_match = re.findall(r'\((\d+),\s*(\d+)\)', original_coords_str)
original_coords = [int(coord_match[0][0]), int(coord_match[0][1]), int(coord_match[1][0]), int(coord_match[1][1])]
scaled_coords_str = scale_coordinates(original_coords, (original_width, original_height), (resized_width, resized_height))

referring_messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image_path},
            {"type": "text", "text": f"Describe the region {scaled_coords_str}"}
        ]
    }
]

referring_result = llm_inference(referring_messages)
print("Referring Result:", referring_result)
```

#### 2️⃣ Grounding Task: Detect element by description
```python
grounding_messages = [
    {
        "role": "user", 
        "content": [
            {"type": "image", "image": image_path},
            {"type": "text", "text": "List all the ui items."}
        ]
    }
]

grounding_result = llm_inference(grounding_messages)

# Extract coordinates from grounding result and rescale them
coord_pattern = r'\((\d+),\s*(\d+)\),\((\d+),\s*(\d+)\)'
matches = re.findall(coord_pattern, grounding_result)
for match in matches:
    scaled_coords = [int(match[0]), int(match[1]), int(match[2]), int(match[3])]
    original_coords_str = scale_coordinates(scaled_coords, (resized_width, resized_height), (original_width, original_height))
    grounding_result = grounding_result.replace(f"({match[0]}, {match[1]}),({match[2]}, {match[3]})", original_coords_str)

print("Grounding Result:", grounding_result)
```

#### 3️⃣ Generation Task: Generate UI from description
```python
generation_messages = [
    {
        "role": "user",
        "content": [
            # {"type": "image", "image": image_path}, # your optional referring image
            {"type": "text", "text": "Generate a login form with email field, password field, and submit button"}
        ]
    }
]

generation_result = llm_inference(generation_messages)
print("Generation Result:", generation_result)
```

## οΏ½ Performance

### 🎯 Task Specifications
| Task Type | Description | Evaluation Metrics |
|-----------|-------------|-------------------|
| **Referring** | UI element referring generation | JSON format accuracy, Classification accuracy, text similarity, color similarity |
| **Grounding** | UI element detection and localization | JSON format accuracy, mAP, AP50, AP75 |
| **Generation** | UI code generation | JSON format accuracy, LLM-based judgement (following Web2Code) |

<div align="center">
  <img src="https://mdn.alipayobjects.com/huamei_v87pyo/afts/img/A*BEXJRYktR-oAAAAAVsAAAAgAepd5AQ/original" alt="UI-UG Understanding Evaluation" width="900px">
  <p><em>Table 1: Performance comparison of different models on referring and grounding tasks.</em></p>
</div>

<div align="center">
  <img src="https://mdn.alipayobjects.com/huamei_v87pyo/afts/img/A*IHONQZa83ZQAAAAAT5AAAAgAepd5AQ/original" alt="UI-UG Generation Evaluation" width="900px">
  <p><em>Table 2: Performance comparison of different models on generation tasks.</em></p>
</div>

<div align="center">
  <img src="https://mdn.alipayobjects.com/huamei_v87pyo/afts/img/A*N3DVTqMsxUgAAAAAd_AAAAgAepd5AQ/original" alt="UI-UG Grounding Vis1" width="900px">
  <img src="https://mdn.alipayobjects.com/huamei_v87pyo/afts/img/A*ckCUR6JpRE0AAAAAa3AAAAgAepd5AQ/original" alt="UI-UG Grounding Vis2" width="900px">
  <p><em>Figure 2: Visual comparison of different models for grounding task for complex UIs.</em></p>
</div>

## πŸ“„ License

This project is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0) - see the [LICENSE](LICENSE) file for details.

## 🀝 Acknowledgments

- [**Qwen2.5-VL**](https://github.com/QwenLM/Qwen2.5-VL) - Multimodal foundation model
- [**VLLM**](https://github.com/vllm-project/vllm) - High-performance inference framework
- [**Ant Group**](https://www.antgroup.com) & [**AFX Team**](https://afx-team.github.io) - Technical support and scenario applications

## πŸ“– Citation

If you find this work useful, please consider citing:

```bibtex
@misc{yang2025uiugunifiedmllmui,
      title={UI-UG: A Unified MLLM for UI Understanding and Generation}, 
      author={Hao Yang and Weijie Qiu and Ru Zhang and Zhou Fang and Ruichao Mao and Xiaoyu Lin and Maji Huang and Zhaosong Huang and Teng Guo and Shuoyang Liu and Hai Rao},
      year={2025},
      eprint={2509.24361},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2509.24361}, 
}
```

---

<div align="center">
  <p><i>Built with ❀️ by <a href="https://afx-team.github.io/">Alipay AFX</a></i></p>
</div>