File size: 34,862 Bytes
813afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
---
language:
- tr
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:482091
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
- loss:CoSENTLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: Ya da dışarı çıkıp yürü ya da biraz koşun. Bunu düzenli olarak
    yapmıyorum ama Washington bunu yapmak için harika bir yer.
  sentences:
  - “Washington's yürüyüş ya da koşu için harika bir yer.”
  - H-2A uzaylılar Amerika Birleşik Devletleri'nde zaman kısa süreleri var.
  - “Washington'da düzenli olarak yürüyüşe ya da koşuya çıkıyorum.”
- source_sentence: Orta yaylalar ve güney kıyıları arasındaki kontrast daha belirgin
    olamazdı.
  sentences:
  - İşitme Yardımı Uyumluluğu Müzakere Kuralları Komitesi, Federal İletişim Komisyonu'nun
    bir ürünüdür.
  - Dağlık ve sahil arasındaki kontrast kolayca işaretlendi.
  - Kontrast işaretlenemedi.
- source_sentence: Bir 1997 Henry J. Kaiser Aile Vakfı anket yönetilen bakım planlarında
    Amerikalılar temelde kendi bakımı ile memnun olduğunu bulundu.
  sentences:
  - Kaplanları takip ederken çok sessiz olmalısın.
  - Henry Kaiser vakfı insanların sağlık hizmetlerinden hoşlandığını gösteriyor.
  - Henry Kaiser Vakfı insanların sağlık hizmetlerinden nefret ettiğini gösteriyor.
- source_sentence: Eminim yapmışlardır.
  sentences:
  - Eminim öyle yapmışlardır.
  - Batı Teksas'ta 100 10 dereceydi.
  - Eminim yapmamışlardır.
- source_sentence: Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti,
    her şeyi denedi ve daha az ilgileniyordu.
  sentences:
  - Oğlu her şeye olan ilgisini kaybediyordu.
  - Pek bir şey yapmadım.
  - Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.
datasets:
- emrecan/all-nli-tr
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: all nli tr test
      type: all-nli-tr-test
    metrics:
    - type: cosine_accuracy
      value: 0.8966145437983908
      name: Cosine Accuracy
    - type: cosine_accuracy
      value: 0.9351753453772582
      name: Cosine Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.8043925123766598
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.804133282756889
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.8133873820848544
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8199552151367876
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts22 test
      type: sts22-test
    metrics:
    - type: pearson_cosine
      value: 0.647912337747937
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6694072470896322
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.6514085062457564
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6827342891126081
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev gte multilingual base
      type: sts-dev-gte-multilingual-base
    metrics:
    - type: pearson_cosine
      value: 0.838717139426684
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8428367492381358
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test gte multilingual base
      type: sts-test-gte-multilingual-base
    metrics:
    - type: pearson_cosine
      value: 0.8133873820848544
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8199552151367876
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb dev 768
      type: stsb-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.870311456444647
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8747522169942328
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb dev 512
      type: stsb-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8696934286998554
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8753487201891684
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb dev 256
      type: stsb-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.8644706498119142
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.873468734899321
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb dev 128
      type: stsb-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.8591309130178328
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8700377378574327
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb dev 64
      type: stsb-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.8479124810212979
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8655596653561272
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb test 768
      type: stsb-test-768
    metrics:
    - type: pearson_cosine
      value: 0.8455412308380735
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8535290217691063
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb test 512
      type: stsb-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8464773608783734
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8553900248212041
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb test 256
      type: stsb-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8443046458551826
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8550098621393595
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb test 128
      type: stsb-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8363964421208214
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8511193715667303
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb test 64
      type: stsb-test-64
    metrics:
    - type: pearson_cosine
      value: 0.8235450515966374
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8460761238725121
      name: Spearman Cosine
---

# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision ca1791e0bcc104f6db161f27de1340241b13c5a4 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr)
- **Language:** tr
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti, her şeyi denedi ve daha az ilgileniyordu.',
    'Oğlu her şeye olan ilgisini kaybediyordu.',
    'Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Dataset: `all-nli-tr-test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.8966** |

#### Semantic Similarity

* Datasets: `sts-test`, `sts22-test`, `sts-dev-gte-multilingual-base`, `sts-test-gte-multilingual-base`, `sts-test`, `sts22-test`, `stsb-dev-768`, `stsb-dev-512`, `stsb-dev-256`, `stsb-dev-128`, `stsb-dev-64`, `stsb-test-768`, `stsb-test-512`, `stsb-test-256`, `stsb-test-128` and `stsb-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | sts-test | sts22-test | sts-dev-gte-multilingual-base | sts-test-gte-multilingual-base | stsb-dev-768 | stsb-dev-512 | stsb-dev-256 | stsb-dev-128 | stsb-dev-64 | stsb-test-768 | stsb-test-512 | stsb-test-256 | stsb-test-128 | stsb-test-64 |
|:--------------------|:---------|:-----------|:------------------------------|:-------------------------------|:-------------|:-------------|:-------------|:-------------|:------------|:--------------|:--------------|:--------------|:--------------|:-------------|
| pearson_cosine      | 0.8134   | 0.6514     | 0.8387                        | 0.8134                         | 0.8703       | 0.8697       | 0.8645       | 0.8591       | 0.8479      | 0.8455        | 0.8465        | 0.8443        | 0.8364        | 0.8235       |
| **spearman_cosine** | **0.82** | **0.6827** | **0.8428**                    | **0.82**                       | **0.8748**   | **0.8753**   | **0.8735**   | **0.87**     | **0.8656**  | **0.8535**    | **0.8554**    | **0.855**     | **0.8511**    | **0.8461**   |

#### Triplet

* Dataset: `all-nli-tr-test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9352** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### all-nli-tr

* Dataset: [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) at [daeabfb](https://huggingface.co/datasets/emrecan/all-nli-tr/tree/daeabfbc01f82757ab998bd23ce0ddfceaa5e24d)
* Size: 482,091 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 10.51 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.47 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.23</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                 | sentence2                                                          | score            |
  |:----------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
  | <code>Bir uçak kalkıyor.</code>                           | <code>Bir hava uçağı kalkıyor.</code>                              | <code>5.0</code> |
  | <code>Bir adam büyük bir flüt çalıyor.</code>             | <code>Bir adam flüt çalıyor.</code>                                | <code>3.8</code> |
  | <code>Bir adam pizzaya rendelenmiş peynir yayıyor.</code> | <code>Bir adam pişmemiş pizzaya rendelenmiş peynir yayıyor.</code> | <code>3.8</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### all-nli-tr

* Dataset: [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) at [daeabfb](https://huggingface.co/datasets/emrecan/all-nli-tr/tree/daeabfbc01f82757ab998bd23ce0ddfceaa5e24d)
* Size: 6,567 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                         |
  | details | <ul><li>min: 6 tokens</li><li>mean: 15.89 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.02 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.1</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                    | sentence2                                           | score             |
  |:---------------------------------------------|:----------------------------------------------------|:------------------|
  | <code>Şapkalı bir adam dans ediyor.</code>   | <code>Sert şapka takan bir adam dans ediyor.</code> | <code>5.0</code>  |
  | <code>Küçük bir çocuk ata biniyor.</code>    | <code>Bir çocuk ata biniyor.</code>                 | <code>4.75</code> |
  | <code>Bir adam yılana fare yediriyor.</code> | <code>Adam yılana fare yediriyor.</code>            | <code>5.0</code>  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `warmup_steps`: 144
- `bf16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 144
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | all-nli-tr-test_cosine_accuracy | sts-test_spearman_cosine | sts22-test_spearman_cosine | sts-dev-gte-multilingual-base_spearman_cosine | sts-test-gte-multilingual-base_spearman_cosine | stsb-dev-768_spearman_cosine | stsb-dev-512_spearman_cosine | stsb-dev-256_spearman_cosine | stsb-dev-128_spearman_cosine | stsb-dev-64_spearman_cosine | stsb-test-768_spearman_cosine | stsb-test-512_spearman_cosine | stsb-test-256_spearman_cosine | stsb-test-128_spearman_cosine | stsb-test-64_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:------------------------:|:--------------------------:|:---------------------------------------------:|:----------------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:----------------------------:|
| 0      | 0    | -             | -               | 0.8966                          | 0.8041                   | 0.6694                     | -                                             | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 0.1327 | 1000 | 2.5299        | 3.3893          | -                               | -                        | -                          | 0.8318                                        | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 0.2655 | 2000 | 2.1132        | 3.3050          | -                               | -                        | -                          | 0.8345                                        | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 0.3982 | 3000 | 5.1488        | 2.7752          | -                               | -                        | -                          | 0.8481                                        | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 0.5310 | 4000 | 5.4103        | 2.7242          | -                               | -                        | -                          | 0.8445                                        | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 0.6637 | 5000 | 5.1896        | 2.6701          | -                               | -                        | -                          | 0.8451                                        | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 0.7965 | 6000 | 5.0105        | 2.6489          | -                               | -                        | -                          | 0.8431                                        | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 0.9292 | 7000 | 5.1059        | 2.6114          | -                               | -                        | -                          | 0.8428                                        | -                                              | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 1.0    | 7533 | -             | -               | 0.9352                          | 0.8200                   | 0.6827                     | -                                             | 0.8200                                         | -                            | -                            | -                            | -                            | -                           | -                             | -                             | -                             | -                             | -                            |
| 1.1111 | 200  | 34.2828       | 29.8737         | -                               | -                        | -                          | -                                             | -                                              | 0.8671                       | 0.8671                       | 0.8639                       | 0.8606                       | 0.8546                      | -                             | -                             | -                             | -                             | -                            |
| 2.2222 | 400  | 28.038        | 28.8915         | -                               | -                        | -                          | -                                             | -                                              | 0.8740                       | 0.8742                       | 0.8720                       | 0.8691                       | 0.8648                      | -                             | -                             | -                             | -                             | -                            |
| 3.3333 | 600  | 27.3829       | 29.3391         | -                               | -                        | -                          | -                                             | -                                              | 0.8747                       | 0.8751                       | 0.8728                       | 0.8699                       | 0.8653                      | -                             | -                             | -                             | -                             | -                            |
| 4.4444 | 800  | 26.807        | 30.0090         | -                               | -                        | -                          | -                                             | -                                              | 0.8756                       | 0.8761                       | 0.8741                       | 0.8710                       | 0.8665                      | -                             | -                             | -                             | -                             | -                            |
| 5.5556 | 1000 | 26.4543       | 30.5886         | -                               | -                        | -                          | -                                             | -                                              | 0.8753                       | 0.8757                       | 0.8739                       | 0.8705                       | 0.8662                      | -                             | -                             | -                             | -                             | -                            |
| 6.6667 | 1200 | 26.0413       | 31.3750         | -                               | -                        | -                          | -                                             | -                                              | 0.8744                       | 0.8751                       | 0.8730                       | 0.8698                       | 0.8655                      | -                             | -                             | -                             | -                             | -                            |
| 7.7778 | 1400 | 25.8221       | 31.6515         | -                               | -                        | -                          | -                                             | -                                              | 0.8752                       | 0.8758                       | 0.8739                       | 0.8706                       | 0.8661                      | -                             | -                             | -                             | -                             | -                            |
| 8.8889 | 1600 | 25.6656       | 31.9805         | -                               | -                        | -                          | -                                             | -                                              | 0.8746                       | 0.8752                       | 0.8733                       | 0.8700                       | 0.8655                      | -                             | -                             | -                             | -                             | -                            |
| 10.0   | 1800 | 25.5355       | 32.0454         | -                               | -                        | -                          | -                                             | -                                              | 0.8748                       | 0.8753                       | 0.8735                       | 0.8700                       | 0.8656                      | 0.8535                        | 0.8554                        | 0.8550                        | 0.8511                        | 0.8461                       |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->