nhonhoccode commited on
Commit
f3a24e5
·
verified ·
1 Parent(s): a0a069d

Add model card (rich)

Browse files
Files changed (1) hide show
  1. README.md +94 -195
README.md CHANGED
@@ -1,199 +1,98 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
  library_name: transformers
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - qwen
9
+ - unsloth
10
+ - cybersecurity
11
+ - instruction-tuning
12
+ - sft
13
+ - kaggle
14
+ base_model: unsloth/Qwen3-0.6B
15
+ datasets:
16
+ - zobayer0x01/cybersecurity-qa
17
+ metrics:
18
+ - sacrebleu
19
+ - rougeL
20
+ - chrf++
21
+ - bertscore
22
+ - perplexity
23
  ---
24
 
25
+ # qwen3-0-6b Cybersecurity QA (SFT)
26
+ Fine-tuned on Kaggle using **SFT**.
27
+
28
+
29
+ ### Model Summary
30
+ - Base: `unsloth/Qwen3-0.6B`
31
+ - Trainable params: **187,044,352** / total **596,049,920**
32
+ - Train wall time (s): 30586.8
33
+ - Files: pytorch_model.safetensors + config.json + tokenizer files
34
+
35
+ ### Data
36
+ - Dataset: `zobayer0x01/cybersecurity-qa`
37
+ - Samples: **total=42427**, train=38184, val=1200
38
+ - Prompting: Chat template with a fixed system prompt:
39
+ ```text
40
+ You are a helpful assistant specialized in cybersecurity Q&A.
41
+ ```
42
+
43
+
44
+ ### Training Config
45
+ | Field | Value |
46
+ |---|---|
47
+ | Method | **SFT** |
48
+ | Precision | fp32 |
49
+ | Quantization | none |
50
+ | Mode | steps |
51
+ | Num Epochs | 1 |
52
+ | Max Steps | 4000 |
53
+ | Eval Steps | 400 |
54
+ | Save Steps | 400 |
55
+ | LR | 5e-05 |
56
+ | Max Length | 768 |
57
+ | per_device_batch_size | 1 |
58
+ | grad_accum | 8 |
59
+
60
+ ### Evaluation (greedy, fixed-length decode)
61
+ | Metric | Score |
62
+ |---|---:|
63
+ | BLEU-4 | 1.49 |
64
+ | ROUGE-L | 13.89 |
65
+ | F1 (token-level) | 25.82 |
66
+ | chrF++ | 19.80 |
67
+ | BERTScore F1 | 82.71 |
68
+ | Perplexity | 16.81 |
69
+
70
+ > Notes: We normalize whitespace/punctuations, compute token-level P/R/F1, and use `evaluate`'s `sacrebleu/rouge/chrf/bertscore`.
71
+
72
+ ## How to use
73
+ ```python
74
+ from transformers import AutoTokenizer, AutoModelForCausalLM
75
+ tok = AutoTokenizer.from_pretrained("nhonhoccode/qwen3-0-6b-cybersecqa-sft-freeze2-20251111-1238")
76
+ mdl = AutoModelForCausalLM.from_pretrained("nhonhoccode/qwen3-0-6b-cybersecqa-sft-freeze2-20251111-1238")
77
+ prompt = tok.apply_chat_template(
78
+ [{"role":"system","content":"You are a helpful assistant specialized in cybersecurity Q&A."},
79
+ {"role":"user","content":"Explain SQL injection in one paragraph."}],
80
+ tokenize=False, add_generation_prompt=True
81
+ )
82
+ ids = tok(prompt, return_tensors="pt").input_ids
83
+ out = mdl.generate(ids, max_new_tokens=128, do_sample=False)
84
+ print(tok.decode(out[0][ids.shape[-1]:], skip_special_tokens=True))
85
+ ```
86
+
87
+ ### Intended Use & Limitations
88
+ - Domain: cybersecurity Q&A; not guaranteed to be accurate for legal/medical purposes.
89
+ - The model can hallucinate or produce outdated guidance—verify before applying in production.
90
+ - Safety: No explicit content filtering. Add guardrails (moderation, retrieval augmentation) for deployment.
91
+
92
+ ### Reproducibility (env)
93
+ - `transformers>=4.43,<5`, `accelerate>=0.33,<0.34`, `peft>=0.11,<0.13`, `datasets>=2.18,<3`, `evaluate>=0.4,<0.5`,
94
+ `rouge-score`, `sacrebleu`, `huggingface_hub>=0.23,<0.26`, `bitsandbytes`
95
+ - GPU: T4-class; LoRA recommended for low VRAM.
96
+
97
+ ### Changelog
98
+ - 2025-11-11 12:39 — Initial release (SFT)