Update README.md
Browse files
README.md
CHANGED
|
@@ -64,6 +64,150 @@ The following hyperparameters were used during training:
|
|
| 64 |
| 0.2618 | 5.0 | 2610 | 0.6625 | 0.7711 | 0.8476 | 0.8075 | 0.8030 |
|
| 65 |
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
### Framework versions
|
| 68 |
|
| 69 |
- Transformers 4.52.4
|
|
|
|
| 64 |
| 0.2618 | 5.0 | 2610 | 0.6625 | 0.7711 | 0.8476 | 0.8075 | 0.8030 |
|
| 65 |
|
| 66 |
|
| 67 |
+
|
| 68 |
+
### Inference
|
| 69 |
+
|
| 70 |
+
```bash
|
| 71 |
+
# Install the Python wrapper
|
| 72 |
+
!pip install pytesseract pillow
|
| 73 |
+
|
| 74 |
+
# Install the Tesseract engine on a Debian/Ubuntu-based system (like Colab)
|
| 75 |
+
!sudo apt install tesseract-ocr
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
import torch
|
| 80 |
+
from transformers import AutoProcessor, AutoModelForTokenClassification
|
| 81 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 82 |
+
import pytesseract
|
| 83 |
+
import numpy as np
|
| 84 |
+
import os # For setting environment variable
|
| 85 |
+
|
| 86 |
+
# --- CRITICAL FOR DEBUGGING: Set this at the very top ---
|
| 87 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
| 88 |
+
|
| 89 |
+
# --- ADD THE NORMALIZATION FUNCTION ---
|
| 90 |
+
def normalize_bbox(bbox, width, height):
|
| 91 |
+
return [
|
| 92 |
+
int(1000 * min(max(bbox[0] / width, 0), 1)),
|
| 93 |
+
int(1000 * min(max(bbox[1] / height, 0), 1)),
|
| 94 |
+
int(1000 * min(max(bbox[2] / width, 0), 1)),
|
| 95 |
+
int(1000 * min(max(bbox[3] / height, 0), 1))
|
| 96 |
+
]
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
# --- 1. Load your Fine-Tuned Model and Processor ---
|
| 101 |
+
MODEL_ID = "nnul/layoutlmv3-xfund"
|
| 102 |
+
|
| 103 |
+
print("Loading processor...")
|
| 104 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 105 |
+
print("Loading model...")
|
| 106 |
+
model = AutoModelForTokenClassification.from_pretrained(MODEL_ID)
|
| 107 |
+
|
| 108 |
+
print("Moving model to device...")
|
| 109 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 110 |
+
model.to(device)
|
| 111 |
+
print("Model moved successfully.")
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
```python
|
| 115 |
+
# --- 2. Load the Image ---
|
| 116 |
+
image_path = "your_image.png"
|
| 117 |
+
image = Image.open(image_path).convert("RGB")
|
| 118 |
+
width, height = image.size
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
# --- 3. Perform OCR and NORMALIZE Bounding Boxes ---
|
| 123 |
+
print("Performing OCR...")
|
| 124 |
+
data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
|
| 125 |
+
words = []
|
| 126 |
+
unnormalized_boxes = []
|
| 127 |
+
normalized_boxes = []
|
| 128 |
+
|
| 129 |
+
for i in range(len(data['text'])):
|
| 130 |
+
if int(data['conf'][i]) > 30 and data['text'][i].strip() != '':
|
| 131 |
+
word = data['text'][i]
|
| 132 |
+
x, y, w, h = data['left'][i], data['top'][i], data['width'][i], data['height'][i]
|
| 133 |
+
|
| 134 |
+
actual_box = [x, y, x + w, y + h]
|
| 135 |
+
unnormalized_boxes.append(actual_box)
|
| 136 |
+
|
| 137 |
+
normalized_box = normalize_bbox(actual_box, width, height)
|
| 138 |
+
normalized_boxes.append(normalized_box)
|
| 139 |
+
|
| 140 |
+
words.append(word)
|
| 141 |
+
|
| 142 |
+
print(f"OCR found {len(words)} words.")
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
```python
|
| 146 |
+
# --- 4. Manually Preprocess and Predict ---
|
| 147 |
+
print("Preprocessing inputs...")
|
| 148 |
+
encoding = processor(
|
| 149 |
+
image,
|
| 150 |
+
words,
|
| 151 |
+
boxes=normalized_boxes,
|
| 152 |
+
return_tensors="pt",
|
| 153 |
+
truncation=True
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
print("Moving inputs to device...")
|
| 157 |
+
for k, v in encoding.items():
|
| 158 |
+
encoding[k] = v.to(device)
|
| 159 |
+
|
| 160 |
+
print("Running inference...")
|
| 161 |
+
with torch.no_grad():
|
| 162 |
+
outputs = model(**encoding)
|
| 163 |
+
|
| 164 |
+
logits = outputs.logits
|
| 165 |
+
predictions_indices = logits.argmax(-1).squeeze().tolist()
|
| 166 |
+
|
| 167 |
+
word_ids = encoding.word_ids()
|
| 168 |
+
previous_word_id = None
|
| 169 |
+
word_predictions = []
|
| 170 |
+
for idx, word_id in enumerate(word_ids):
|
| 171 |
+
if word_id is not None and word_id != previous_word_id:
|
| 172 |
+
label_id = predictions_indices[idx]
|
| 173 |
+
word_predictions.append(model.config.id2label[label_id])
|
| 174 |
+
previous_word_id = word_id
|
| 175 |
+
```
|
| 176 |
+
|
| 177 |
+
```python
|
| 178 |
+
def visualize_predictions(image, words, boxes, predictions):
|
| 179 |
+
label2color = {
|
| 180 |
+
"B-QUESTION": "blue", "I-QUESTION": "blue",
|
| 181 |
+
"B-ANSWER": "green", "I-ANSWER": "green",
|
| 182 |
+
"B-HEADER": "orange", "I-HEADER": "orange",
|
| 183 |
+
"O": "gray"
|
| 184 |
+
}
|
| 185 |
+
draw_image = image.copy()
|
| 186 |
+
draw = ImageDraw.Draw(draw_image)
|
| 187 |
+
try:
|
| 188 |
+
font = ImageFont.truetype("arial.ttf", 12)
|
| 189 |
+
except IOError:
|
| 190 |
+
font = ImageFont.load_default()
|
| 191 |
+
for word, box, label in zip(words, boxes, predictions):
|
| 192 |
+
color = label2color.get(label, 'red')
|
| 193 |
+
draw.rectangle(box, outline=color, width=2)
|
| 194 |
+
entity_type = label.split('-')[1] if '-' in label else 'OTHER'
|
| 195 |
+
if entity_type != 'OTHER':
|
| 196 |
+
draw.text((box[0], box[1] - 10), entity_type, fill=color, font=font)
|
| 197 |
+
return draw_image
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
```python
|
| 201 |
+
print("Visualizing results...")
|
| 202 |
+
visualized_image = visualize_predictions(image, words, unnormalized_boxes, word_predictions)
|
| 203 |
+
display(visualized_image)
|
| 204 |
+
visualized_image.save("result_visualization_manual.png")
|
| 205 |
+
print("Saved visualization to result_visualization_manual.png")
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
### Framework versions
|
| 212 |
|
| 213 |
- Transformers 4.52.4
|