File size: 11,008 Bytes
5f631c6 ab35335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
# Adapted from:
# https://github.com/ZFTurbo/Weighted-Boxes-Fusion/blob/master/ensemble_boxes/ensemble_boxes_wbf.py
import warnings
from typing import Dict, List, Tuple, Union, Literal
import numpy as np
import numpy.typing as npt
def prefilter_boxes(
boxes: List[npt.NDArray[np.float64]],
scores: List[npt.NDArray[np.float64]],
labels: List[npt.NDArray[np.int_]],
weights: List[float],
thr: float,
class_agnostic: bool = False,
) -> Dict[Union[str, int], npt.NDArray[np.float64]]:
"""
Reformats and filters boxes.
Output is a dict of boxes to merge separately.
Args:
boxes (list[np array[n x 4]]): List of boxes. One list per model.
scores (list[np array[n]]): List of confidences.
labels (list[np array[n]]): List of labels.
weights (list): Model weights.
thr (float): Confidence threshold
class_agnostic (bool, optional): Merge boxes from different classes. Defaults to False.
Returns:
dict[np array [? x 8]]: Filtered boxes.
"""
# Create dict with boxes stored by its label
new_boxes = dict()
for t in range(len(boxes)):
assert len(boxes[t]) == len(scores[t]), "len(boxes) != len(scores)"
assert len(boxes[t]) == len(labels[t]), "len(boxes) != len(labels)"
for j in range(len(boxes[t])):
score = scores[t][j]
if score < thr:
continue
label = int(labels[t][j])
box_part = boxes[t][j]
x1 = float(box_part[0])
y1 = float(box_part[1])
x2 = float(box_part[2])
y2 = float(box_part[3])
# Box data checks
if x2 < x1:
warnings.warn("X2 < X1 value in box. Swap them.")
x1, x2 = x2, x1
if y2 < y1:
warnings.warn("Y2 < Y1 value in box. Swap them.")
y1, y2 = y2, y1
array = np.array([x1, x2, y1, y2])
if array.min() < 0 or array.max() > 1:
warnings.warn("Coordinates outside [0, 1]")
array = np.clip(array, 0, 1)
x1, x2, y1, y2 = array
if (x2 - x1) * (y2 - y1) == 0.0:
warnings.warn("Zero area box skipped: {}.".format(box_part))
continue
# [label, score, weight, model index, x1, y1, x2, y2]
b = [int(label), float(score) * weights[t], weights[t], t, x1, y1, x2, y2]
label_k = "*" if class_agnostic else label
if label_k not in new_boxes:
new_boxes[label_k] = []
new_boxes[label_k].append(b)
# Sort each list in dict by score and transform it to numpy array
for k in new_boxes:
current_boxes = np.array(new_boxes[k])
new_boxes[k] = current_boxes[current_boxes[:, 1].argsort()[::-1]]
return new_boxes
def merge_labels(
labels: npt.NDArray[np.int_], confs: npt.NDArray[np.float64]
) -> int:
"""
Custom function for merging labels.
If all labels are the same, return the unique value.
Else, return the label of the most confident non-title (class 2) box.
Args:
labels (np array [n]): Labels.
confs (np array [n]): Confidence.
Returns:
int: Label.
"""
if len(np.unique(labels)) == 1:
return labels[0]
else: # Most confident and not a title
confs = confs[confs != 2]
labels = labels[labels != 2]
return labels[np.argmax(confs)]
def get_weighted_box(
boxes: npt.NDArray[np.float64], conf_type: Literal["avg", "max"] = "avg"
) -> npt.NDArray[np.float64]:
"""
Merges boxes by using the weighted fusion.
Args:
boxes (np array [n x 8]): Boxes to merge.
conf_type (str, optional): Confidence merging type. Defaults to "avg".
Returns:
np array [8]: Merged box.
"""
box = np.zeros(8, dtype=np.float32)
conf = 0
conf_list = []
w = 0
for b in boxes:
box[4:] += b[1] * b[4:]
conf += b[1]
conf_list.append(b[1])
w += b[2]
box[0] = merge_labels(
np.array([b[0] for b in boxes]), np.array([b[1] for b in boxes])
)
box[1] = np.max(conf_list) if conf_type == "max" else np.mean(conf_list)
box[2] = w
box[3] = -1 # model index field is retained for consistency but is not used.
box[4:] /= conf
return box
def get_biggest_box(
boxes: npt.NDArray[np.float64], conf_type: Literal["avg", "max"] = "avg"
) -> npt.NDArray[np.float64]:
"""
Merges boxes by using the biggest box.
Args:
boxes (np array [n x 8]): Boxes to merge.
conf_type (str, optional): Confidence merging type. Defaults to "avg".
Returns:
np array [8]: Merged box.
"""
box = np.zeros(8, dtype=np.float32)
box[4:] = boxes[0][4:]
conf_list = []
w = 0
for b in boxes:
box[4] = min(box[4], b[4])
box[5] = min(box[5], b[5])
box[6] = max(box[6], b[6])
box[7] = max(box[7], b[7])
conf_list.append(b[1])
w += b[2]
box[0] = merge_labels(
np.array([b[0] for b in boxes]), np.array([b[1] for b in boxes])
)
# print(box[0], np.array([b[0] for b in boxes]))
box[1] = np.max(conf_list) if conf_type == "max" else np.mean(conf_list)
box[2] = w
box[3] = -1 # model index field is retained for consistency but is not used.
return box
def find_matching_box_fast(
boxes_list: npt.NDArray[np.float64],
new_box: npt.NDArray[np.float64],
match_iou: float,
) -> Tuple[int, float]:
"""
Reimplementation of find_matching_box with numpy instead of loops.
Gives significant speed up for larger arrays (~100x).
This was previously the bottleneck since the function is called for every entry in the array.
Args:
boxes_list (np.ndarray): Array of boxes with shape (N, 8).
new_box (np.ndarray): New box to match with shape (8,).
match_iou (float): IoU threshold for matching.
Returns:
Tuple[int, float]: Index of best matching box (-1 if no match) and IoU value.
"""
def bb_iou_array(
boxes: npt.NDArray[np.float64], new_box: npt.NDArray[np.float64]
) -> npt.NDArray[np.float64]:
# bb interesection over union
xA = np.maximum(boxes[:, 0], new_box[0])
yA = np.maximum(boxes[:, 1], new_box[1])
xB = np.minimum(boxes[:, 2], new_box[2])
yB = np.minimum(boxes[:, 3], new_box[3])
interArea = np.maximum(xB - xA, 0) * np.maximum(yB - yA, 0)
# compute the area of both the prediction and ground-truth rectangles
boxAArea = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
boxBArea = (new_box[2] - new_box[0]) * (new_box[3] - new_box[1])
iou = interArea / (boxAArea + boxBArea - interArea)
return iou
if boxes_list.shape[0] == 0:
return -1, match_iou
ious = bb_iou_array(boxes_list[:, 4:], new_box[4:])
# ious[boxes[:, 0] != new_box[0]] = -1
best_idx = np.argmax(ious)
best_iou = ious[best_idx]
if best_iou <= match_iou:
best_iou = match_iou
best_idx = -1
return best_idx, best_iou
def weighted_boxes_fusion(
boxes_list: List[npt.NDArray[np.float64]],
labels_list: List[npt.NDArray[np.int_]],
scores_list: List[npt.NDArray[np.float64]],
iou_thr: float = 0.5,
skip_box_thr: float = 0.0,
conf_type: Literal["avg", "max"] = "avg",
merge_type: Literal["weighted", "biggest"] = "weighted",
class_agnostic: bool = False,
) -> Tuple[npt.NDArray[np.float64], npt.NDArray[np.float64], npt.NDArray[np.int_]]:
"""
Custom WBF implementation that supports a class_agnostic mode and a biggest box fusion.
Boxes are expected to be in normalized (x0, y0, x1, y1) format.
Args:
boxes_list (list[np.ndarray[n x 4]]): List of boxes. One list per model.
labels_list (list[np.ndarray[n]]): List of labels.
scores_list (list[np.ndarray[n]]): List of confidences.
iou_thr (float, optional): IoU threshold for matching. Defaults to 0.55.
skip_box_thr (float, optional): Exclude boxes with score < skip_box_thr. Defaults to 0.0.
conf_type (str, optional): Confidence merging type ("avg" or "max"). Defaults to "avg".
merge_type (str, optional): Merge type ("weighted" or "biggest"). Defaults to "weighted".
class_agnostic (bool, optional): Merge boxes from different classes. Defaults to False.
Returns:
numpy.ndarray [N x 4]: Array of bounding boxes.
numpy.ndarray [N]: Array of labels.
numpy.ndarray [N]: Array of scores.
"""
weights = np.ones(len(boxes_list))
assert conf_type in ["avg", "max"], 'Conf type must be "avg" or "max"'
assert merge_type in ["weighted", "biggest"], 'Conf type must be "weighted" or "biggest"'
filtered_boxes = prefilter_boxes(
boxes_list,
scores_list,
labels_list,
weights,
skip_box_thr,
class_agnostic=class_agnostic,
)
if len(filtered_boxes) == 0:
return np.zeros((0, 4)), np.zeros((0,)), np.zeros((0,))
overall_boxes = []
for label in filtered_boxes:
boxes = filtered_boxes[label]
clusters = []
# Clusterize boxes
for j in range(len(boxes)):
ids = [i for i in range(len(boxes)) if i != j]
index, best_iou = find_matching_box_fast(boxes[ids], boxes[j], iou_thr)
if index != -1:
index = ids[index]
cluster_idx = [
clust_idx
for clust_idx, clust in enumerate(clusters)
if (j in clust or index in clust)
]
if len(cluster_idx):
cluster_idx = cluster_idx[0]
clusters[cluster_idx] = list(
set(clusters[cluster_idx] + [index, j])
)
else:
clusters.append([index, j])
else:
clusters.append([j])
for j, c in enumerate(clusters):
if merge_type == "weighted":
weighted_box = get_weighted_box(boxes[c], conf_type)
elif merge_type == "biggest":
weighted_box = get_biggest_box(boxes[c], conf_type)
if conf_type == "max":
weighted_box[1] = weighted_box[1] / weights.max()
else: # avg
weighted_box[1] = weighted_box[1] * len(c) / weights.sum()
overall_boxes.append(weighted_box)
overall_boxes = np.array(overall_boxes)
overall_boxes = overall_boxes[overall_boxes[:, 1].argsort()[::-1]]
boxes = overall_boxes[:, 4:]
scores = overall_boxes[:, 1]
labels = overall_boxes[:, 0]
return boxes, labels, scores
|