|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from .darknet import CSPDarknet |
|
|
from .network_blocks import BaseConv, CSPLayer, DWConv |
|
|
|
|
|
|
|
|
class YOLOPAFPN(nn.Module): |
|
|
""" |
|
|
YOLOv3 model. Darknet 53 is the default backbone of this model. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
depth=1.0, |
|
|
width=1.0, |
|
|
in_features=("dark3", "dark4", "dark5"), |
|
|
in_channels=[256, 512, 1024], |
|
|
depthwise=False, |
|
|
act="silu", |
|
|
): |
|
|
super().__init__() |
|
|
self.backbone = CSPDarknet(depth, width, depthwise=depthwise, act=act) |
|
|
self.in_features = in_features |
|
|
self.in_channels = in_channels |
|
|
Conv = DWConv if depthwise else BaseConv |
|
|
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode="nearest") |
|
|
self.lateral_conv0 = BaseConv( |
|
|
int(in_channels[2] * width), int(in_channels[1] * width), 1, 1, act=act |
|
|
) |
|
|
self.C3_p4 = CSPLayer( |
|
|
int(2 * in_channels[1] * width), |
|
|
int(in_channels[1] * width), |
|
|
round(3 * depth), |
|
|
False, |
|
|
depthwise=depthwise, |
|
|
act=act, |
|
|
) |
|
|
|
|
|
self.reduce_conv1 = BaseConv( |
|
|
int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act |
|
|
) |
|
|
self.C3_p3 = CSPLayer( |
|
|
int(2 * in_channels[0] * width), |
|
|
int(in_channels[0] * width), |
|
|
round(3 * depth), |
|
|
False, |
|
|
depthwise=depthwise, |
|
|
act=act, |
|
|
) |
|
|
|
|
|
|
|
|
self.bu_conv2 = Conv( |
|
|
int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act |
|
|
) |
|
|
self.C3_n3 = CSPLayer( |
|
|
int(2 * in_channels[0] * width), |
|
|
int(in_channels[1] * width), |
|
|
round(3 * depth), |
|
|
False, |
|
|
depthwise=depthwise, |
|
|
act=act, |
|
|
) |
|
|
|
|
|
|
|
|
self.bu_conv1 = Conv( |
|
|
int(in_channels[1] * width), int(in_channels[1] * width), 3, 2, act=act |
|
|
) |
|
|
self.C3_n4 = CSPLayer( |
|
|
int(2 * in_channels[1] * width), |
|
|
int(in_channels[2] * width), |
|
|
round(3 * depth), |
|
|
False, |
|
|
depthwise=depthwise, |
|
|
act=act, |
|
|
) |
|
|
|
|
|
def forward(self, input): |
|
|
""" |
|
|
Args: |
|
|
inputs: input images. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor]: FPN feature. |
|
|
""" |
|
|
|
|
|
|
|
|
out_features = self.backbone(input) |
|
|
features = [out_features[f] for f in self.in_features] |
|
|
[x2, x1, x0] = features |
|
|
|
|
|
fpn_out0 = self.lateral_conv0(x0) |
|
|
f_out0 = self.upsample(fpn_out0) |
|
|
f_out0 = torch.cat([f_out0, x1], 1) |
|
|
f_out0 = self.C3_p4(f_out0) |
|
|
|
|
|
fpn_out1 = self.reduce_conv1(f_out0) |
|
|
f_out1 = self.upsample(fpn_out1) |
|
|
f_out1 = torch.cat([f_out1, x2], 1) |
|
|
pan_out2 = self.C3_p3(f_out1) |
|
|
|
|
|
p_out1 = self.bu_conv2(pan_out2) |
|
|
p_out1 = torch.cat([p_out1, fpn_out1], 1) |
|
|
pan_out1 = self.C3_n3(p_out1) |
|
|
|
|
|
p_out0 = self.bu_conv1(pan_out1) |
|
|
p_out0 = torch.cat([p_out0, fpn_out0], 1) |
|
|
pan_out0 = self.C3_n4(p_out0) |
|
|
|
|
|
outputs = (pan_out2, pan_out1, pan_out0) |
|
|
return outputs |
|
|
|