omnivinci / model_utils_packing.py
leoye's picture
Initial commit
fd01e7c
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from importlib import import_module
from typing import Tuple
import torch
import transformers
from torch import nn
from torch.nn import functional as F
__all__ = ["patch"]
def _get_unpad_data(attention_mask: torch.Tensor, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor, int]:
if hasattr(_get_unpad_data, "seqlens_in_batch"):
seqlens_in_batch = _get_unpad_data.seqlens_in_batch
else:
seqlens_in_batch = torch.sum(attention_mask, dim=1)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return indices, cu_seqlens, max_seqlen_in_batch
def set_seqlens_in_batch(seqlens_in_batch: torch.Tensor) -> None:
_get_unpad_data.seqlens_in_batch = seqlens_in_batch
def patch(model: nn.Module) -> None:
if transformers.__version__ < "4.43.0":
m = import_module(model.__module__)
if not hasattr(m, "_get_unpad_data"):
raise ValueError(f"Module {m} does not have function '_get_unpad_data' for packing")
m._get_unpad_data = _get_unpad_data
else:
transformers.modeling_flash_attention_utils._get_unpad_data = _get_unpad_data