--- language: - en license: apache-2.0 tags: - granite - client-simulation - dialogue - bitsandbytes - 4-bit - unsloth - transformers base_model: ibm-granite/granite-3.2-2b-instruct pipeline_tag: text-generation datasets: - merged_mental_health_dataset.jsonl library_name: transformers --- # Gradiant-ClientSim-v0.1 A 4-bit quantized client simulation model based on IBM Granite 3.2B, fine-tuned for client interaction and simulation tasks. This model is compatible with Huggingface Transformers and bitsandbytes for efficient inference. ## Model Details - **Base Model:** IBM Granite 3.2B (Unsloth) - **Precision:** 4-bit (safetensors, bitsandbytes) - **Architecture:** Causal Language Model - **Tokenizer:** Included (BPE) - **Intended Use:** Client simulation, dialogue, and assistant tasks ## Files Included - `model.safetensors` — Main model weights (4-bit) - `config.json` — Model configuration - `generation_config.json` — Generation parameters - `tokenizer.json`, `tokenizer_config.json`, `vocab.json`, `merges.txt`, `special_tokens_map.json`, `added_tokens.json` — Tokenizer files ## Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_id = "oneblackmage/Gradiant-ClientSim-v0.1" bnb_config = BitsAndBytesConfig(load_in_4bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "<|user>How can I improve my focus at work?\n<|assistant|>\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Quantization - This model is stored in 4-bit precision using [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) for efficient inference on modern GPUs. - For best performance, use with `transformers` >= 4.45 and `bitsandbytes` >= 0.43. ## License - See the LICENSE file or Huggingface model card for details. ## Citation If you use this model, please cite the original IBM Granite model and this fine-tuned version. --- For questions or issues, open an issue on the Huggingface repo or contact the maintainer.