Upload folder using huggingface_hub
Browse files- README.md +86 -0
- config.json +31 -0
- generation_config.json +6 -0
- onnx/model.onnx +3 -0
- onnx/model_bnb4.onnx +3 -0
- onnx/model_fp16.onnx +3 -0
- onnx/model_int8.onnx +3 -0
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
- quantize_config.json +18 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +40 -0
README.md
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
tags:
|
| 7 |
+
- transformers
|
| 8 |
+
library_name: transformers.js
|
| 9 |
+
base_model:
|
| 10 |
+
- PleIAs/Monad
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Monad (ONNX)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
This is an ONNX version of [PleIAs/Monad](https://huggingface.co/PleIAs/Monad). It was automatically converted and uploaded using [this Hugging Face Space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Usage with Transformers.js
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
See the pipeline documentation for `text-generation`: https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.TextGenerationPipeline
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# ⚛️ Monad
|
| 31 |
+
|
| 32 |
+
<div align="center">
|
| 33 |
+
<img src="figures/pleias.jpg" width="60%" alt="Pleias" />
|
| 34 |
+
</div>
|
| 35 |
+
|
| 36 |
+
<p align="center">
|
| 37 |
+
<a href="https://pleias.fr/blog/blogsynth-the-new-data-frontier"><b>Blog announcement</b></a>
|
| 38 |
+
</p>
|
| 39 |
+
|
| 40 |
+
**Monad** is a 56 million parameters generalist Small Reasoning Model, trained on 200 billions tokens from <a href="https://huggingface.co/PleIAs/Baguettotron">SYNTH</a>, a fully open generalist dataset.
|
| 41 |
+
|
| 42 |
+
As of 2025, Monad is the best contender for the smallest viable language models. Despite being less than half of gpt-2, Monad not only answers in consistent English but performs significanly beyond chance on MMLU and other major industry benchmarks.
|
| 43 |
+
|
| 44 |
+
<p align="center">
|
| 45 |
+
<img width="80%" src="figures/training_efficiency.jpeg">
|
| 46 |
+
</p>
|
| 47 |
+
|
| 48 |
+
Monad's name is a reference to Leibniz concept and general idea of the smallest possible unit of intelligence.
|
| 49 |
+
|
| 50 |
+
## Features
|
| 51 |
+
Monad has been natively trained for instructions with thinking traces. We implemented a series of dedicated pipelines for:
|
| 52 |
+
* Memorization of encyclopedic knowledge (50,000 vital articles from Wikipedia), though in this size range hallucinations have to be expected.
|
| 53 |
+
* Retrieval-Augmented Generation with grounding (following on our initial experiments with Pleias-RAG series)
|
| 54 |
+
* Arithmetic and simple math resolution problem
|
| 55 |
+
* Editing tasks
|
| 56 |
+
* Information extraction
|
| 57 |
+
* Creative writing, including unusual synthetic exercises like lipograms or layout poems.
|
| 58 |
+
|
| 59 |
+
Monad is strictly monolingual in English. We trained a new custom tokenizer (likely one of the smallest tokenizer to date, less than 8,000 individual tokens), exclusively trained on SYNTH so that we maintain a relatively good compression ratio.
|
| 60 |
+
|
| 61 |
+
## Model design and training
|
| 62 |
+
Monad is a 56M parameters decoders with a standard Qwen/Llama-like design, except for its extremely compact size and overall opiniated architecture for depth (with 64 layers)
|
| 63 |
+
<p align="center">
|
| 64 |
+
<img width="80%" src="figures/monad_structure.png">
|
| 65 |
+
</p>
|
| 66 |
+
|
| 67 |
+
Monad was trained on 16 h100 from Jean Zay (compute plan n°A0191016886). Full pre-training took a bit less than 6 hours.
|
| 68 |
+
|
| 69 |
+
## Evaluation
|
| 70 |
+
Monad attains performance on MMLU significantly beyond chance with close to 30% of positive rate. We also find non-random results on gsm8k (8%) and HotPotQA (8%)
|
| 71 |
+
|
| 72 |
+
To our knowledge, there is no model remotely close in this size range for evaluation comparison. Spiritually and practically, Monad remains unique.
|
| 73 |
+
|
| 74 |
+
## Use and deployment
|
| 75 |
+
Monad has been trained on the standard instruction style from Qwen.
|
| 76 |
+
|
| 77 |
+
```xml
|
| 78 |
+
<|im_start|>user
|
| 79 |
+
Who are you?<|im_end|>
|
| 80 |
+
<|im_start|>assistant
|
| 81 |
+
<think>
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
Monad has no support yet for multi-turn.
|
| 85 |
+
|
| 86 |
+
A major envisioned use case for Monad is explainability, as the model does provide a unique trade-off between observability and actual reasoning performance.
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_attn_implementation_autoset": true,
|
| 3 |
+
"_name_or_path": "PleIAs/Monad",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"LlamaForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"attention_bias": false,
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"bos_token_id": 1,
|
| 10 |
+
"eos_token_id": 2,
|
| 11 |
+
"head_dim": 64,
|
| 12 |
+
"hidden_act": "silu",
|
| 13 |
+
"hidden_size": 256,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 768,
|
| 16 |
+
"max_position_embeddings": 2048,
|
| 17 |
+
"mlp_bias": false,
|
| 18 |
+
"model_type": "llama",
|
| 19 |
+
"num_attention_heads": 4,
|
| 20 |
+
"num_hidden_layers": 64,
|
| 21 |
+
"num_key_value_heads": 4,
|
| 22 |
+
"pretraining_tp": 1,
|
| 23 |
+
"rms_norm_eps": 1e-05,
|
| 24 |
+
"rope_scaling": null,
|
| 25 |
+
"rope_theta": 10000,
|
| 26 |
+
"tie_word_embeddings": true,
|
| 27 |
+
"torch_dtype": "float32",
|
| 28 |
+
"transformers_version": "4.49.0",
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 8192
|
| 31 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.49.0"
|
| 6 |
+
}
|
onnx/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8243735cd3ca8f725f87aa5dee6142bb077a8a1db3a1f64087dab8554bf6e8c4
|
| 3 |
+
size 227902592
|
onnx/model_bnb4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bbb4bc65757e51e06f7831a75e00c8132e29f271de994262be19200869ebb85
|
| 3 |
+
size 40539987
|
onnx/model_fp16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b9402c399e2d1be8de2249c30d6b6c11123cb05248367f9b64f371bcb4f1d38
|
| 3 |
+
size 114619221
|
onnx/model_int8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9c27ae76f508e5aeb8b1954446831b9e7bde5d2da5cbf027cbb674bcdb2f0bd
|
| 3 |
+
size 58526168
|
onnx/model_q4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb6b89b38a81c43dd15860ea9b17760294e90ab7daac2771ef51f19f6cb8753e
|
| 3 |
+
size 43944659
|
onnx/model_q4f16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67000f2c517b89ed22ad425810fda68940962bb8ade11a26dd14d1de74e9516f
|
| 3 |
+
size 36304936
|
onnx/model_quantized.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9c27ae76f508e5aeb8b1954446831b9e7bde5d2da5cbf027cbb674bcdb2f0bd
|
| 3 |
+
size 58526168
|
onnx/model_uint8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fec7db87faa8668021649d4899249b32ea6525c734ceda71a8f1ed6635b47737
|
| 3 |
+
size 58526397
|
quantize_config.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"modes": [
|
| 3 |
+
"fp16",
|
| 4 |
+
"q8",
|
| 5 |
+
"int8",
|
| 6 |
+
"uint8",
|
| 7 |
+
"q4",
|
| 8 |
+
"q4f16",
|
| 9 |
+
"bnb4"
|
| 10 |
+
],
|
| 11 |
+
"per_channel": false,
|
| 12 |
+
"reduce_range": false,
|
| 13 |
+
"block_size": null,
|
| 14 |
+
"is_symmetric": true,
|
| 15 |
+
"accuracy_level": null,
|
| 16 |
+
"quant_type": 1,
|
| 17 |
+
"op_block_list": null
|
| 18 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[UNK]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|begin_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "<|end_of_text|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[PAD]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
}
|
| 35 |
+
},
|
| 36 |
+
"clean_up_tokenization_spaces": false,
|
| 37 |
+
"extra_special_tokens": {},
|
| 38 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 39 |
+
"tokenizer_class": "PreTrainedTokenizer"
|
| 40 |
+
}
|