Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,87 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
[
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model:
|
| 3 |
+
- descript/dac_24khz
|
| 4 |
+
library_name: transformers.js
|
| 5 |
---
|
| 6 |
|
| 7 |
+
ONNX weights for https://huggingface.co/descript/dac_24khz.
|
| 8 |
+
|
| 9 |
+
## Inference sample code
|
| 10 |
+
```py
|
| 11 |
+
import onnxruntime as ort
|
| 12 |
+
|
| 13 |
+
encoder_session = ort.InferenceSession("encoder_model.onnx")
|
| 14 |
+
decoder_session = ort.InferenceSession("decoder_model.onnx")
|
| 15 |
+
|
| 16 |
+
encoder_inputs = {encoder_session.get_inputs()[0].name: dummy_encoder_inputs.numpy()}
|
| 17 |
+
encoder_outputs = encoder_session.run(None, encoder_inputs)[0]
|
| 18 |
+
|
| 19 |
+
decoder_inputs = {decoder_session.get_inputs()[0].name: encoder_outputs}
|
| 20 |
+
decoder_outputs = decoder_session.run(None, decoder_inputs)[0]
|
| 21 |
+
|
| 22 |
+
# Print the results
|
| 23 |
+
print("Encoder Output Shape:", encoder_outputs.shape)
|
| 24 |
+
print("Decoder Output Shape:", decoder_outputs.shape)
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Conversion code
|
| 28 |
+
```py
|
| 29 |
+
import torch
|
| 30 |
+
import torch.nn as nn
|
| 31 |
+
from transformers import DacModel
|
| 32 |
+
|
| 33 |
+
class DacEncoder(nn.Module):
|
| 34 |
+
def __init__(self, model):
|
| 35 |
+
super(DacEncoder, self).__init__()
|
| 36 |
+
self.model = model
|
| 37 |
+
|
| 38 |
+
def forward(self, input_values):
|
| 39 |
+
return self.model.encode(input_values).audio_codes
|
| 40 |
+
|
| 41 |
+
class DacDecoder(nn.Module):
|
| 42 |
+
def __init__(self, model):
|
| 43 |
+
super(DacDecoder, self).__init__()
|
| 44 |
+
self.model = model
|
| 45 |
+
|
| 46 |
+
def forward(self, audio_codes):
|
| 47 |
+
quantized_representation = self.model.quantizer.from_codes(audio_codes)[0]
|
| 48 |
+
return self.model.decoder(quantized_representation)
|
| 49 |
+
|
| 50 |
+
model = DacModel.from_pretrained("descript/dac_24khz")
|
| 51 |
+
encoder = DacEncoder(model)
|
| 52 |
+
decoder = DacDecoder(model)
|
| 53 |
+
|
| 54 |
+
# Export encoder
|
| 55 |
+
dummy_encoder_inputs = torch.randn((4, 1, 12340))
|
| 56 |
+
torch.onnx.export(
|
| 57 |
+
encoder,
|
| 58 |
+
dummy_encoder_inputs,
|
| 59 |
+
"encoder_model.onnx",
|
| 60 |
+
export_params=True,
|
| 61 |
+
opset_version=14,
|
| 62 |
+
do_constant_folding=True,
|
| 63 |
+
input_names=['input_values'],
|
| 64 |
+
output_names=['audio_codes'],
|
| 65 |
+
dynamic_axes={
|
| 66 |
+
'input_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'},
|
| 67 |
+
'audio_codes': {0: 'batch_size', 2: 'time_steps'},
|
| 68 |
+
},
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Export decoder
|
| 72 |
+
dummy_decoder_inputs = torch.randint(model.config.codebook_size, (4, model.config.n_codebooks, 100))
|
| 73 |
+
torch.onnx.export(
|
| 74 |
+
decoder,
|
| 75 |
+
dummy_decoder_inputs,
|
| 76 |
+
"decoder_model.onnx",
|
| 77 |
+
export_params=True,
|
| 78 |
+
opset_version=14,
|
| 79 |
+
do_constant_folding=True,
|
| 80 |
+
input_names=['audio_codes'],
|
| 81 |
+
output_names=['audio_values'],
|
| 82 |
+
dynamic_axes={
|
| 83 |
+
'audio_codes': {0: 'batch_size', 2: 'time_steps'},
|
| 84 |
+
'audio_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'},
|
| 85 |
+
},
|
| 86 |
+
)
|
| 87 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|