Kaguya-19 commited on
Commit
ebb191f
·
verified ·
1 Parent(s): fde4436

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,329 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # AgentCPM-Report: Gemini-2.5-pro-DeepResearch Level Local DeepResearch
5
+
6
+ <p align="center">
7
+ <a href='https://huggingface.co/openbmb/AgentCPM-Report'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-AgentCPM--Report-yellow'>
8
+ <a href='https://huggingface.co/openbmb/AgentCPM-Report-GGUF'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-AgentCPM--Report--GGUF-yellow'>
9
+ <a href='https://github.com/OpenBMB/AgentCPM'><img src='https://img.shields.io/badge/GitHub-AgentCPM-blue?logo=github'>
10
+ <a href='https://github.com/OpenBMB/UltraRAG'><img src='https://img.shields.io/badge/GitHub-UltraRAG-blue?logo=github'>
11
+ </p>
12
+
13
+ ## Links
14
+ - [AgentCPM-Report](https://huggingface.co/openbmb/AgentCPM-Report) The Gemini-2.5-pro-DeepResearch Level Local DeepResearch Model
15
+ - [AgentCPM-Report-GGUF](https://huggingface.co/openbmb/AgentCPM-Report-GGUF) The GGUF version
16
+ - [AgentCPM](https://github.com/OpenBMB/AgentCPM) Our code for AgentCPM Series
17
+ - [UltraRAG](https://github.com/OpenBMB/UltraRAG) The low code RAG Framework
18
+
19
+
20
+ ## News
21
+ - [2026-01-20] 🚀🚀🚀 We open-sourced AgentCPM-Report built on MiniCPM4.1-8B, capable of matching top closed-source commercial systems like Gemini-2.5-pro-DeepResearch in report generation.
22
+
23
+ ## Overview
24
+ AgentCPM-Report is an open-source large language model agent jointly developed by [THUNLP](https://nlp.csai.tsinghua.edu.cn), Renmin University of China [RUCBM](https://github.com/RUCBM), and [ModelBest](https://modelbest.cn/en). It is based on the [MiniCPM4.1](https://github.com/OpenBMB/MiniCPM4.1) 8B-parameter base model. It accepts user instructions as input and autonomously generates long-form reports. Key highlights:
25
+
26
+ - **Strong advantages in insight and comprehensiveness**: The first 8B edge-side model to surpass closed-source DeepResearch systems on deep research report generation tasks, redefining the performance ceiling for small-scale agent systems—especially achieving SOTA results on the Insight metric.
27
+ - **Lightweight and local deployment**: Supports agile local deployment. With frameworks like UltraRAG, it enables large-scale knowledge base construction and can generate reports that are even more professional and in-depth than large models. Lightweight models plus local knowledge bases make it feasible to deploy a deep-research report writing system on a personal computer, laying the foundation for report writing based on personal privacy data or private-domain data.
28
+
29
+ ## Demo Cases
30
+ `YouTube link or Bilibili link for the video`
31
+
32
+ ## Quick Start
33
+ ### Docker Deployment
34
+ We provide a minimal one-click `docker-compose` deployment integrated with UltraRAG, including the RAG framework UltraRAG2.0, the model inference framework vllm, and the vector database milvus. If you want CPU inference, we also provide a llama.cpp-based version for gguf models—just switch `docker-compose.yml` to `docker-compose.cpu.yml`.
35
+
36
+ ``` bash
37
+ git clone git@github.com:OpenBMB/UltraRAG.git
38
+ cd UltraRAG
39
+ git checkout agentcpm-report-demo
40
+ cd agentcpm-report-demo
41
+ cp env.example .env
42
+ docker-compose -f docker-compose.yml up -d --build
43
+ docker-compose -f docker-compose.yml logs -f ultrarag-ui
44
+ ```
45
+ The first startup pulls images, downloads the model, and configures the environment, which takes about 30 minutes.
46
+ Then open `http://localhost:5050`. If you can see the UI, your deployment is successful.
47
+ Follow the UI instructions to upload local files, chunk them, and build indexes; then in the Chat section, select AgentCPM-Report in the pipeline to start your workflow.
48
+
49
+ (Optional) You can import [Wiki2024](https://modelscope.cn/datasets/UltraRAG/UltraRAG_Benchmark/tree/master/corpus/wiki24) as the writing database.
50
+
51
+ You can read more tutorials about AgentCPM-Report in the [documentation](https://ultrarag.openbmb.cn/pages/cn/pipeline/agentcpm-report).
52
+
53
+
54
+ ## Evaluation
55
+ <table align="center">
56
+ <thead>
57
+ <tr>
58
+ <th align="center">DeepResearch Bench</th>
59
+ <th align="center">Overall</th>
60
+ <th align="center">Comprehensiveness</th>
61
+ <th align="center">Insight</th>
62
+ <th align="center">Instruction Following</th>
63
+ <th align="center">Readability</th>
64
+ </tr>
65
+ </thead>
66
+ <tbody>
67
+ <tr>
68
+ <td align="center">Doubao-research</td>
69
+ <td align="center">44.34</td>
70
+ <td align="center">44.84</td>
71
+ <td align="center">40.56</td>
72
+ <td align="center">47.95</td>
73
+ <td align="center">44.69</td>
74
+ </tr>
75
+ <tr>
76
+ <td align="center">Claude-research</td>
77
+ <td align="center">45</td>
78
+ <td align="center">45.34</td>
79
+ <td align="center">42.79</td>
80
+ <td align="center">47.58</td>
81
+ <td align="center">44.66</td>
82
+ </tr>
83
+ <tr>
84
+ <td align="center">OpenAI-deepresearch</td>
85
+ <td align="center">46.45</td>
86
+ <td align="center">46.46</td>
87
+ <td align="center">43.73</td>
88
+ <td align="center">49.39</td>
89
+ <td align="center">47.22</td>
90
+ </tr>
91
+ <tr>
92
+ <td align="center">Gemini-2.5-Pro-deepresearch</td>
93
+ <td align="center">49.71</td>
94
+ <td align="center">49.51</td>
95
+ <td align="center">49.45</td>
96
+ <td align="center">50.12</td>
97
+ <td align="center">50</td>
98
+ </tr>
99
+ <tr>
100
+ <td align="center">WebWeaver(Qwen3-30B-A3B)</td>
101
+ <td align="center">46.77</td>
102
+ <td align="center">45.15</td>
103
+ <td align="center">45.78</td>
104
+ <td align="center">49.21</td>
105
+ <td align="center">47.34</td>
106
+ </tr>
107
+ <tr>
108
+ <td align="center">WebWeaver(Claude-Sonnet-4)</td>
109
+ <td align="center">50.58</td>
110
+ <td align="center">51.45</td>
111
+ <td align="center">50.02</td>
112
+ <td align="center">50.81</td>
113
+ <td align="center">49.79</td>
114
+ </tr>
115
+ <tr>
116
+ <td align="center">Enterprise-DR(Gemini-2.5-Pro)</td>
117
+ <td align="center">49.86</td>
118
+ <td align="center">49.01</td>
119
+ <td align="center">50.28</td>
120
+ <td align="center">50.03</td>
121
+ <td align="center">49.98</td>
122
+ </tr>
123
+ <tr>
124
+ <td align="center">RhinoInsigh(Gemini-2.5-Pro)</td>
125
+ <td align="center">50.92</td>
126
+ <td align="center">50.51</td>
127
+ <td align="center">51.45</td>
128
+ <td align="center">51.72</td>
129
+ <td align="center">50</td>
130
+ </tr>
131
+ <tr>
132
+ <td align="center">AgentCPM-Report</td>
133
+ <td align="center">50.11</td>
134
+ <td align="center">50.54</td>
135
+ <td align="center">52.64</td>
136
+ <td align="center">48.87</td>
137
+ <td align="center">44.17</td>
138
+ </tr>
139
+ </tbody>
140
+ </table>
141
+
142
+ <table align="center">
143
+ <thead>
144
+ <tr>
145
+ <th align="center">DeepResearch Gym</th>
146
+ <th align="center">Avg.</th>
147
+ <th align="center">Clarity</th>
148
+ <th align="center">Depth</th>
149
+ <th align="center">Balance</th>
150
+ <th align="center">Breadth</th>
151
+ <th align="center">Support</th>
152
+ <th align="center">Insightfulness</th>
153
+ </tr>
154
+ </thead>
155
+ <tbody>
156
+ <tr>
157
+ <td align="center">Doubao-research</td>
158
+ <td align="center">84.46</td>
159
+ <td align="center">68.85</td>
160
+ <td align="center">93.12</td>
161
+ <td align="center">83.96</td>
162
+ <td align="center">93.33</td>
163
+ <td align="center">84.38</td>
164
+ <td align="center">83.12</td>
165
+ </tr>
166
+ <tr>
167
+ <td align="center">Claude-research</td>
168
+ <td align="center">80.25</td>
169
+ <td align="center">86.67</td>
170
+ <td align="center">96.88</td>
171
+ <td align="center">84.41</td>
172
+ <td align="center">96.56</td>
173
+ <td align="center">26.77</td>
174
+ <td align="center">90.22</td>
175
+ </tr>
176
+ <tr>
177
+ <td align="center">OpenAI-deepresearch</td>
178
+ <td align="center">91.27</td>
179
+ <td align="center">84.90</td>
180
+ <td align="center">98.10</td>
181
+ <td align="center">89.80</td>
182
+ <td align="center">97.40</td>
183
+ <td align="center">88.40</td>
184
+ <td align="center">89.00</td>
185
+ </tr>
186
+ <tr>
187
+ <td align="center">Gemini-2.5-pro-deepresearch</td>
188
+ <td align="center">96.02</td>
189
+ <td align="center">90.71</td>
190
+ <td align="center">99.90</td>
191
+ <td align="center">93.37</td>
192
+ <td align="center">99.69</td>
193
+ <td align="center">95.00</td>
194
+ <td align="center">97.45</td>
195
+ </tr>
196
+ <tr>
197
+ <td align="center">WebWeaver (Qwen3-30b-a3b)</td>
198
+ <td align="center">77.27</td>
199
+ <td align="center">71.88</td>
200
+ <td align="center">85.51</td>
201
+ <td align="center">75.80</td>
202
+ <td align="center">84.78</td>
203
+ <td align="center">63.77</td>
204
+ <td align="center">81.88</td>
205
+ </tr>
206
+ <tr>
207
+ <td align="center">WebWeaver (Claude-sonnet-4)</td>
208
+ <td align="center">96.77</td>
209
+ <td align="center">90.50</td>
210
+ <td align="center">99.87</td>
211
+ <td align="center">94.30</td>
212
+ <td align="center">100.00</td>
213
+ <td align="center">98.73</td>
214
+ <td align="center">97.22</td>
215
+ </tr>
216
+ <tr>
217
+ <td align="center">AgentCPM-Report</td>
218
+ <td align="center">98.48</td>
219
+ <td align="center">95.1</td>
220
+ <td align="center">100.0</td>
221
+ <td align="center">98.5</td>
222
+ <td align="center">100.0</td>
223
+ <td align="center">97.3</td>
224
+ <td align="center">100.0</td>
225
+ </tr>
226
+ </tbody>
227
+ </table>
228
+
229
+ <table align="center">
230
+ <thead>
231
+ <tr>
232
+ <th align="center">DeepConsult</th>
233
+ <th align="center">Avg.</th>
234
+ <th align="center">Win</th>
235
+ <th align="center">Tie</th>
236
+ <th align="center">Lose</th>
237
+ </tr>
238
+ </thead>
239
+ <tbody>
240
+ <tr>
241
+ <td align="center">Doubao-research</td>
242
+ <td align="center">5.42</td>
243
+ <td align="center">29.95</td>
244
+ <td align="center">40.35</td>
245
+ <td align="center">29.7</td>
246
+ </tr>
247
+ <tr>
248
+ <td align="center">Claude-research</td>
249
+ <td align="center">4.6</td>
250
+ <td align="center">25</td>
251
+ <td align="center">38.89</td>
252
+ <td align="center">36.11</td>
253
+ </tr>
254
+ <tr>
255
+ <td align="center">OpenAI-deepresearch</td>
256
+ <td align="center">5</td>
257
+ <td align="center">0</td>
258
+ <td align="center">100</td>
259
+ <td align="center">0</td>
260
+ </tr>
261
+ <tr>
262
+ <td align="center">Gemini-2.5-Pro-deepresearch</td>
263
+ <td align="center">6.7</td>
264
+ <td align="center">61.27</td>
265
+ <td align="center">31.13</td>
266
+ <td align="center">7.6</td>
267
+ </tr>
268
+ <tr>
269
+ <td align="center">WebWeaver(Qwen3-30B-A3B)</td>
270
+ <td align="center">4.57</td>
271
+ <td align="center">28.65</td>
272
+ <td align="center">34.9</td>
273
+ <td align="center">36.46</td>
274
+ </tr>
275
+ <tr>
276
+ <td align="center">WebWeaver(Claude-Sonnet-4)</td>
277
+ <td align="center">6.96</td>
278
+ <td align="center">66.86</td>
279
+ <td align="center">10.47</td>
280
+ <td align="center">22.67</td>
281
+ </tr>
282
+ <tr>
283
+ <td align="center">Enterprise-DR(Gemini-2.5-Pro)</td>
284
+ <td align="center">6.82</td>
285
+ <td align="center">71.57</td>
286
+ <td align="center">19.12</td>
287
+ <td align="center">9.31</td>
288
+ </tr>
289
+ <tr>
290
+ <td align="center">RhinoInsigh(Gemini-2.5-Pro)</td>
291
+ <td align="center">6.82</td>
292
+ <td align="center">68.51</td>
293
+ <td align="center">11.02</td>
294
+ <td align="center">20.47</td>
295
+ </tr>
296
+ <tr>
297
+ <td align="center">AgentCPM-Report</td>
298
+ <td align="center">6.6</td>
299
+ <td align="center">57.6</td>
300
+ <td align="center">13.73</td>
301
+ <td align="center">28.68</td>
302
+ </tr>
303
+ </tbody>
304
+ </table>
305
+
306
+ Our evaluation datasets include DeepResearch Bench, DeepConsult, and DeepResearch Gym. The writing-time knowledge base includes about 2.7 million [Arxiv papers](https://www.kaggle.com/api/v1/datasets/download/Cornell-University/arxiv) and about 200,000 internal webpage summaries.
307
+
308
+ ## Acknowledgements
309
+ This project would not be possible without the support and contributions of the open-source community. During development, we referred to and used multiple excellent open-source frameworks, models, and data resources, including [verl](https://github.com/volcengine/verl), [UltraRAG](https://github.com/OpenBMB/UltraRAG), [MiniCPM4.1](https://github.com/OpenBMB/MiniCPM4.1), and [SurveyGo](https://surveygo.modelbest.cn/).
310
+
311
+ ## Contributions
312
+ Project leads: Yishan Li, Wentong Chen
313
+
314
+ Contributors: Yishan Li, Wentong Chen, Yukun Yan, Mingwei Li, Sen Mei, Xiaorong Wang, Kunpeng Liu, Xin Cong, Shuo Wang, Zhong Zhang, Yaxi Lu, Zhenghao Liu, Yankai Lin, Zhiyuan Liu, Maosong Sun
315
+
316
+ Advisors: Yukun Yan, Yankai Lin, Zhiyuan Liu, Maosong Sun
317
+
318
+ ## Citation
319
+
320
+ If **AgentCPM-Report** is helpful for your research, please cite it as follows:
321
+
322
+ ```bibtex
323
+ @software{AgentCPMReport2026,
324
+ title = {AgentCPM-Report: Gemini-2.5-pro-DeepResearch Level Local DeepResearch},
325
+ author = {Yishan Li, Wentong Chen, Yukun Yan, Mingwei Li, Sen Mei, Xiaorong Wang, Kunpeng Liu, Xin Cong, Shuo Wang, Zhong Zhang, Yaxi Lu, Zhenghao Liu, Yankai Lin, Zhiyuan Liu, Maosong Sun},
326
+ year = {2026},
327
+ url = {https://github.com/OpenBMB/AgentCPM}
328
+ }
329
+ ```
added_tokens.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|execute_end|>": 73444,
3
+ "<|execute_start|>": 73443,
4
+ "<|fim_middle|>": 73446,
5
+ "<|fim_prefix|>": 73445,
6
+ "<|fim_suffix|>": 73447,
7
+ "<|im_end|>": 73440,
8
+ "<|im_start|>": 73441,
9
+ "<|tool_call|>": 73442
10
+ }
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% for message in messages %}{{'<|im_start|>' + message['role'] + '
2
+ ' + message['content'] + '<|im_end|>' + '
3
+ '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
4
+ ' }}{% if enable_thinking is defined and enable_thinking is false %}{{ '<think>
5
+
6
+ </think>
7
+ ' }}{% endif %}{% endif %}
config.json ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiniCPMForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_minicpm.MiniCPMConfig",
9
+ "AutoModel": "modeling_minicpm.MiniCPMForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
11
+ "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
12
+ "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
13
+ },
14
+ "bos_token_id": 1,
15
+ "dim_model_base": 256,
16
+ "eos_token_id": 73440,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 4096,
19
+ "initializer_range": 0.1,
20
+ "intermediate_size": 16384,
21
+ "max_position_embeddings": 65536,
22
+ "model_type": "minicpm",
23
+ "mup_denominator": 32,
24
+ "num_attention_heads": 32,
25
+ "num_hidden_layers": 32,
26
+ "num_key_value_heads": 2,
27
+ "pad_token_id": 73440,
28
+ "pretraining_tp": 1,
29
+ "rms_norm_eps": 1e-06,
30
+ "rope_scaling": {
31
+ "long_factor": [
32
+ 0.9982316082870437,
33
+ 1.033048153422584,
34
+ 1.0749920956484724,
35
+ 1.1255096879436193,
36
+ 1.1863348602111476,
37
+ 1.259543828902579,
38
+ 1.3476188888731149,
39
+ 1.4535223827776373,
40
+ 1.5807816745852985,
41
+ 1.7335856049489526,
42
+ 1.9168922912975785,
43
+ 2.1365471404135326,
44
+ 2.3994084200118646,
45
+ 2.713475511863602,
46
+ 3.0880118452194134,
47
+ 3.533650295140154,
48
+ 4.062463396503134,
49
+ 4.687974098908333,
50
+ 5.425075306704039,
51
+ 6.289818967956352,
52
+ 7.29902962722721,
53
+ 8.469695779093664,
54
+ 9.81809877306655,
55
+ 11.358657902065282,
56
+ 13.102505860712087,
57
+ 15.055862949967128,
58
+ 17.218348131364184,
59
+ 19.581439255386453,
60
+ 22.127353314656723,
61
+ 24.828633849376587,
62
+ 27.6486820771775,
63
+ 30.54334096108829,
64
+ 33.46345345363812,
65
+ 36.358112337548896,
66
+ 39.17816056534983,
67
+ 41.879441100069684,
68
+ 44.425355159339965,
69
+ 46.78844628336223,
70
+ 48.95093146475928,
71
+ 50.90428855401433,
72
+ 52.648136512661125,
73
+ 54.18869564165987,
74
+ 55.537098635632745,
75
+ 56.7077647874992,
76
+ 57.71697544677006,
77
+ 58.58171910802236,
78
+ 59.31882031581807,
79
+ 59.94433101822328,
80
+ 60.47314411958625,
81
+ 60.918782569507,
82
+ 61.29331890286281,
83
+ 61.60738599471455,
84
+ 61.87024727431288,
85
+ 62.089902123428836,
86
+ 62.27320880977746,
87
+ 62.42601274014111,
88
+ 62.55327203194878,
89
+ 62.65917552585329,
90
+ 62.74725058582382,
91
+ 62.82045955451526,
92
+ 62.88128472678279,
93
+ 62.931802319077946,
94
+ 62.97374626130382,
95
+ 63.008562806439365
96
+ ],
97
+ "original_max_position_embeddings": 65536,
98
+ "rope_type": "longrope",
99
+ "short_factor": [
100
+ 0.9982316082870437,
101
+ 1.033048153422584,
102
+ 1.0749920956484724,
103
+ 1.1255096879436193,
104
+ 1.1863348602111476,
105
+ 1.259543828902579,
106
+ 1.3476188888731149,
107
+ 1.4535223827776373,
108
+ 1.5807816745852985,
109
+ 1.7335856049489526,
110
+ 1.9168922912975785,
111
+ 2.1365471404135326,
112
+ 2.3994084200118646,
113
+ 2.713475511863602,
114
+ 3.0880118452194134,
115
+ 3.533650295140154,
116
+ 4.062463396503134,
117
+ 4.687974098908333,
118
+ 5.425075306704039,
119
+ 6.289818967956352,
120
+ 7.29902962722721,
121
+ 8.469695779093664,
122
+ 9.81809877306655,
123
+ 11.358657902065282,
124
+ 13.102505860712087,
125
+ 15.055862949967128,
126
+ 17.218348131364184,
127
+ 19.581439255386453,
128
+ 22.127353314656723,
129
+ 24.828633849376587,
130
+ 27.6486820771775,
131
+ 30.54334096108829,
132
+ 33.46345345363812,
133
+ 36.358112337548896,
134
+ 39.17816056534983,
135
+ 41.879441100069684,
136
+ 44.425355159339965,
137
+ 46.78844628336223,
138
+ 48.95093146475928,
139
+ 50.90428855401433,
140
+ 52.648136512661125,
141
+ 54.18869564165987,
142
+ 55.537098635632745,
143
+ 56.7077647874992,
144
+ 57.71697544677006,
145
+ 58.58171910802236,
146
+ 59.31882031581807,
147
+ 59.94433101822328,
148
+ 60.47314411958625,
149
+ 60.918782569507,
150
+ 61.29331890286281,
151
+ 61.60738599471455,
152
+ 61.87024727431288,
153
+ 62.089902123428836,
154
+ 62.27320880977746,
155
+ 62.42601274014111,
156
+ 62.55327203194878,
157
+ 62.65917552585329,
158
+ 62.74725058582382,
159
+ 62.82045955451526,
160
+ 62.88128472678279,
161
+ 62.931802319077946,
162
+ 62.97374626130382,
163
+ 63.008562806439365
164
+ ]
165
+ },
166
+ "rope_theta": 10000.0,
167
+ "scale_depth": 1.4,
168
+ "scale_emb": 12,
169
+ "sparse_config": null,
170
+ "tie_word_embeddings": false,
171
+ "torch_dtype": "bfloat16",
172
+ "transformers_version": "4.52.4",
173
+ "use_cache": false,
174
+ "vocab_size": 73448
175
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 The OpenBMB Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ MiniCPM model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
23
+
24
+
25
+ class MiniCPMConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
28
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the MiniCPM-7B.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 32000):
37
+ Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`MiniCPMModel`]
39
+ hidden_size (`int`, *optional*, defaults to 4096):
40
+ Dimension of the hidden representations.
41
+ intermediate_size (`int`, *optional*, defaults to 11008):
42
+ Dimension of the MLP representations.
43
+ num_hidden_layers (`int`, *optional*, defaults to 32):
44
+ Number of hidden layers in the Transformer decoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer decoder.
47
+ num_key_value_heads (`int`, *optional*):
48
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
49
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
50
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
51
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
52
+ by meanpooling all the original heads within that group. For more details checkout [this
53
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
54
+ `num_attention_heads`.
55
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
56
+ The non-linear activation function (function or string) in the decoder.
57
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
58
+ The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
59
+ MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
63
+ The epsilon used by the rms normalization layers.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
66
+ relevant if `config.is_decoder=True`.
67
+ pad_token_id (`int`, *optional*):
68
+ Padding token id.
69
+ bos_token_id (`int`, *optional*, defaults to 1):
70
+ Beginning of stream token id.
71
+ eos_token_id (`int`, *optional*, defaults to 2):
72
+ End of stream token id.
73
+ pretraining_tp (`int`, *optional*, defaults to 1):
74
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
75
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
76
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
77
+ issue](https://github.com/pytorch/pytorch/issues/76232).
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
+ Whether to tie weight embeddings
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ rope_scaling (`Dict`, *optional*):
83
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
84
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
85
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
86
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
87
+ these scaling strategies behave:
88
+ https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
89
+ experimental feature, subject to breaking API changes in future versions.
90
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
91
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
92
+ attention_dropout (`float`, *optional*, defaults to 0.0):
93
+ The dropout ratio for the attention probabilities.
94
+
95
+ ```python
96
+ >>> from transformers import MiniCPMModel, MiniCPMConfig
97
+
98
+ >>> # Initializing a MiniCPM minicpm-7b style configuration
99
+ >>> configuration = MiniCPMConfig()
100
+
101
+ >>> # Initializing a model from the minicpm-7b style configuration
102
+ >>> model = MiniCPMModel(configuration)
103
+
104
+ >>> # Accessing the model configuration
105
+ >>> configuration = model.config
106
+ ```"""
107
+
108
+ model_type = 'minicpm'
109
+ keys_to_ignore_at_inference = ['past_key_values']
110
+
111
+ def __init__(
112
+ self,
113
+ vocab_size=32000,
114
+ hidden_size=4096,
115
+ intermediate_size=11008,
116
+ num_hidden_layers=32,
117
+ num_attention_heads=32,
118
+ num_key_value_heads=None,
119
+ hidden_act='silu',
120
+ max_position_embeddings=2048,
121
+ initializer_range=0.02,
122
+ rms_norm_eps=1e-6,
123
+ use_cache=True,
124
+ pad_token_id=None,
125
+ bos_token_id=1,
126
+ eos_token_id=2,
127
+ pretraining_tp=1,
128
+ tie_word_embeddings=True,
129
+ rope_theta=10000.0,
130
+ rope_scaling=None,
131
+ attention_bias=False,
132
+ attention_dropout=0.0,
133
+ scale_emb=1,
134
+ dim_model_base=1,
135
+ scale_depth=1,
136
+ mup_denominator=32,
137
+ sparse_config=None,
138
+ **kwargs):
139
+
140
+ self.vocab_size = vocab_size
141
+ self.max_position_embeddings = max_position_embeddings
142
+ self.hidden_size = hidden_size
143
+ self.intermediate_size = intermediate_size
144
+ self.num_hidden_layers = num_hidden_layers
145
+ self.num_attention_heads = num_attention_heads
146
+
147
+ # for backward compatibility
148
+ if num_key_value_heads is None:
149
+ num_key_value_heads = num_attention_heads
150
+
151
+ self.num_key_value_heads = num_key_value_heads
152
+ self.hidden_act = hidden_act
153
+ self.initializer_range = initializer_range
154
+ self.rms_norm_eps = rms_norm_eps
155
+ self.pretraining_tp = pretraining_tp
156
+ self.use_cache = use_cache
157
+ self.rope_theta = rope_theta
158
+ self.rope_scaling = rope_scaling
159
+ # self._rope_scaling_validation()
160
+ self.attention_bias = attention_bias
161
+ self.attention_dropout = attention_dropout
162
+ self.scale_emb = scale_emb
163
+ self.dim_model_base = dim_model_base
164
+ self.scale_depth = scale_depth
165
+ # only used for Eagle Head
166
+ self.mup_denominator = mup_denominator
167
+
168
+ # sparse config
169
+ self.sparse_config = sparse_config
170
+
171
+ super().__init__(
172
+ pad_token_id=pad_token_id,
173
+ bos_token_id=bos_token_id,
174
+ eos_token_id=eos_token_id,
175
+ tie_word_embeddings=tie_word_embeddings,
176
+ **kwargs,
177
+ )
178
+ try:
179
+ import flash_attn
180
+ self._attn_implementation = 'flash_attention_2'
181
+ except:
182
+ pass
183
+
184
+ def _rope_scaling_validation(self):
185
+ """
186
+ Validate the `rope_scaling` configuration.
187
+ """
188
+ if self.rope_scaling is None:
189
+ return
190
+
191
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
192
+ raise ValueError(
193
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
194
+ f'got {self.rope_scaling}'
195
+ )
196
+ rope_scaling_type = self.rope_scaling.get('type', None)
197
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
198
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
199
+ raise ValueError(
200
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
201
+ )
202
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
203
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 73440,
5
+ "pad_token_id": 73440,
6
+ "transformers_version": "4.52.4",
7
+ "use_cache": false
8
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb87fe4d53fac748e13937c91a203f55fa47568af95c5928d55c351058e81d93
3
+ size 4968138392
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e085343a653f2a7a59fa2a606b8e3a4922e324ae400a5f48b1fd831b1e910c3a
3
+ size 4957610128
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:323fb1bb60247c2e0bb581a2399b43d504872a677892a41e46ccac5f1b83ffdf
3
+ size 4949487768
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7de50a0ba3442d16341142dd1b61dded2c7276c26394b05191a075cb1594f4b7
3
+ size 1495305288
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16370507776
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00003-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00003-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00001-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.norm.weight": "model-00002-of-00004.safetensors"
297
+ }
298
+ }
modeling_minicpm.py ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_end|>",
4
+ "<|im_start|>",
5
+ "<|tool_call|>",
6
+ "<|execute_start|>",
7
+ "<|execute_end|>",
8
+ "<|fim_prefix|>",
9
+ "<|fim_middle|>",
10
+ "<|fim_suffix|>"
11
+ ],
12
+ "bos_token": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "eos_token": {
20
+ "content": "<|im_end|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "pad_token": {
27
+ "content": "<|im_end|>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "unk_token": {
34
+ "content": "<unk>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ }
40
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb74d51116831c3bf65db812c553f94ab0c88dcf97a5bbb37e3504f6d359c530
3
+ size 1181204
tokenizer_config.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "73440": {
31
+ "content": "<|im_end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "73441": {
39
+ "content": "<|im_start|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "73442": {
47
+ "content": "<|tool_call|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "73443": {
55
+ "content": "<|execute_start|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "73444": {
63
+ "content": "<|execute_end|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "73445": {
71
+ "content": "<|fim_prefix|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "73446": {
79
+ "content": "<|fim_middle|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "73447": {
87
+ "content": "<|fim_suffix|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ }
94
+ },
95
+ "additional_special_tokens": [
96
+ "<|im_end|>",
97
+ "<|im_start|>",
98
+ "<|tool_call|>",
99
+ "<|execute_start|>",
100
+ "<|execute_end|>",
101
+ "<|fim_prefix|>",
102
+ "<|fim_middle|>",
103
+ "<|fim_suffix|>"
104
+ ],
105
+ "bos_token": "<s>",
106
+ "clean_up_tokenization_spaces": false,
107
+ "eos_token": "<|im_end|>",
108
+ "extra_special_tokens": {},
109
+ "legacy": true,
110
+ "model_max_length": 1000000000000000019884624838656,
111
+ "pad_token": "<|im_end|>",
112
+ "padding_side": "right",
113
+ "sp_model_kwargs": {},
114
+ "spaces_between_special_tokens": false,
115
+ "split_special_tokens": false,
116
+ "tokenizer_class": "LlamaTokenizer",
117
+ "unk_token": "<unk>",
118
+ "use_default_system_prompt": false
119
+ }