ordlibrary commited on
Commit
9237e5c
·
verified ·
1 Parent(s): e1ebb61

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -238
README.md CHANGED
@@ -1,250 +1,130 @@
1
- # **Deep Solana R1 Model Description**
2
-
3
- **Model Name**: Deep Solana R1
4
- **Developed By**: 8 Bit Labs, in collaboration with Solana Labs and DeepSeek
5
- **Model Type**: Hybrid AI-Zero-Knowledge Proof Framework
6
- **Framework**: Solana Blockchain + DeepSeek AI + Recursive ZK Proofs
7
- **License**: Apache 2.0
8
- **Release Date**: October 2024
9
-
10
- ---
11
-
12
- ## **Model Overview**
13
- Deep Solana R1 is the **first production-ready framework** to unify **artificial intelligence (AI)**, **zero-knowledge proofs (ZKPs)**, and **high-performance blockchain technology** on Solana. Built on the foundation of **DeepSeek R1**, a 48-layer transformer model trained on **14 million Solana transactions**, Deep Solana R1 redefines scalability, privacy, and intelligence in decentralized systems.
14
-
15
- The model introduces **recursive neural proofs**, a novel cryptographic primitive that enables **privacy-preserving, context-aware smart contracts**. With **28,000 AI-ZK transactions per second (TPS)** and **93× faster ZK verification** than traditional systems, Deep Solana R1 sets a new standard for verifiable decentralized intelligence.
16
-
17
- ---
18
-
19
- ## **Key Innovations**
20
-
21
- ### **1. Recursive Zero-Knowledge Proofs (ZKRs)**
22
- - **O(log n) Verification**: Achieves logarithmic proof verification time using FractalGroth16 proofs.
23
- - **AI-Guided Batching**: DeepSeek R1 predicts optimal proof groupings to minimize latency.
24
- - **Topology-Aware Pruning**: Reduces proof size by **78%** using patented algorithms.
25
-
26
- **Impact**:
27
- - **0.3s proof time** (vs. 2.4s baseline).
28
- - **0.002 SOL privacy cost** (vs. 0.07 SOL).
29
-
30
- ---
31
-
32
- ### **2. DeepSeek R1 AI Model**
33
- - **48-Layer Transformer**: Trained on 14M Solana transactions for real-time optimization.
34
- - **Self-Optimizing Circuits**: Adjusts ZK constraints based on live network data.
35
- - **Fraud Detection**: Identifies malicious transactions with **94.2% accuracy**.
36
-
37
- **Features**:
38
- - **AI-Knowledge Proofs (AKPs)**: Dynamically generates ZK constraints via reinforcement learning.
39
- - **Neural Proof Compression**: Reduces proof size using topology-aware pruning.
40
- - **Self-Optimizing Circuits**: Latency-aware proof strategies using real-time network metrics.
41
-
42
- ---
43
-
44
- ### **3. Hybrid Verification System**
45
- - **ZK-SNARKs**: Base layer for transaction correctness.
46
- - **Neural Attestations**: AI layer for contextual validation (e.g., fraud detection, market manipulation).
47
-
48
- **Mathematical Formulation**:
49
- \[
50
- \pi_{\text{final}} = \text{ZK-Prove}(\text{AI-Validate}(S_t), \mathcal{C}_{\text{AI}})
51
- \]
52
- *Where \( \mathcal{C}_{\text{AI}} \) = AI-optimized constraints.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
- ---
 
55
 
56
- ## **Performance Metrics**
57
 
58
- | **Metric** | **Baseline (Solana)** | **Deep Solana R1** |
59
- |--------------------------|-----------------------|---------------------|
60
- | Avg. Proof Time | 2.4s | 0.3s |
61
- | Verification Throughput | 12K TPS | 28K TPS |
62
- | Privacy Overhead | 0.07 SOL | 0.002 SOL |
63
- | State Accuracy | N/A | 94.2% |
64
- | Energy/TX (kWh) | 0.001 | 0.00037 |
65
 
66
- ---
67
 
68
- ## **Use Cases**
 
 
 
69
 
70
- ### **1. Decentralized Finance (DeFi)**
71
- - **Private Swaps**: Trade tokens without exposing wallet balances.
72
- - **AI-Optimized Yield Farming**:
73
- ```solidity
74
- contract AIVault {
75
- function harvest() external {
76
- AI.optimize(yieldStrategy); // Saves 40% in gas fees
77
- }
78
- }
79
- ```
80
-
81
- ### **2. Healthcare**
82
- - **ZK-Protected Records**: Share medical data without exposing patient IDs.
83
-
84
- ### **3. Government**
85
- - **Fraud-Free Voting**: ZK proofs validate eligibility without revealing votes.
86
-
87
- ---
88
-
89
- ## **How to Use**
90
-
91
- ### **For Developers**
92
- 1. Install the Deep Solana R1 SDK:
93
- ```bash
94
- npm install @solana/deep-solana-r1
95
- ```
96
- 2. Deploy a smart contract:
97
- ```rust
98
- use anchor_lang::prelude::*;
99
-
100
- #[program]
101
- pub mod my_program {
102
- use super::*;
103
- pub fn initialize(ctx: Context<Initialize>) -> Result<()> {
104
- Ok(())
105
- }
106
- }
107
- ```
108
-
109
- ### **For Security Audits**
110
- 1. Run a security scan:
111
- ```bash
112
- deep-solana-r1 scan --contract my_program.so
113
- ```
114
- 2. Review the security report:
115
- ```json
116
- {
117
- "Risk Score": 2,
118
- "Compute Unit Efficiency": "High",
119
- "Vulnerabilities": [],
120
- "Optimization Suggestions": []
121
- }
122
- ```
123
-
124
- ---
125
-
126
- ## **Ethical Considerations**
127
- - **Privacy**: All transaction data is anonymized.
128
- - **Transparency**: Datasets and code are open-source and auditable.
129
- - **Energy Efficiency**: Recursive proofs reduce blockchain energy consumption by **63%**.
130
-
131
- ---
132
-
133
- ## **Limitations**
134
- - **Quantum Vulnerability**: Not yet quantum-safe (planned for Q4 2024).
135
- - **Adoption Curve**: Requires integration with existing Solana dApps.
136
-
137
- ---
138
-
139
- ## **Future Work**
140
- - **Quantum-Safe Proofs**: Integration of ML-weakened lattices.
141
- - **Decentralized Prover Networks**: Proof staking for enhanced scalability.
142
-
143
- ---
144
-
145
- ## **Citation**
146
- If you use Deep Solana R1 in your research or projects, please cite:
147
- ```bibtex
148
  @misc{deepsolanar1,
149
  title={Deep Solana R1: A Novel Framework for AI-Guided Recursive Zero-Knowledge Proofs on High-Performance Blockchains},
150
  author={8 Bit Labs, Solana Labs, DeepSeek},
151
  year={2024},
152
  url={https://github.com/8bit-org/DeepSolanaR1}
153
  }
154
- ```
155
-
156
- ---
157
-
158
- ## **License**
159
- Apache 2.0
160
-
161
- ---
162
-
163
- ## **Contact**
164
- For questions, collaborations, or support, contact:
165
- - **Email**: support@8bit.org
166
- - **GitHub**: [github.com/8bit-org/DeepSolanaR1](https://github.com/8bit-org/DeepSolanaR1)
167
-
168
- ---
169
-
170
- ## **Metadata YAML**
171
-
172
- ```yaml
173
- language:
174
- - en
175
- license: apache-2.0
176
- library_name: solana
177
- tags:
178
- - blockchain
179
- - solana
180
- - smart-contracts
181
- - zero-knowledge-proofs
182
- - ai
183
- - rust
184
- - anchor-framework
185
- - cross-chain
186
- - defi
187
- - nft
188
- datasets:
189
- - solana-transactions
190
- - recursive-proofs
191
- - metaplex-nft-metadata
192
- metrics:
193
- - transaction-throughput
194
- - proof-time
195
- - energy-consumption
196
- - privacy-overhead
197
- - fraud-detection-accuracy
198
- pipeline_tag: text-generation
199
- co2_eq_emissions:
200
- value: 0.00017575
201
- unit: kg CO₂eq/tx
202
- source: 8-bit-labs
203
- region: global
204
- description: "Calculated based on global average CO₂eq emissions per kWh (0.475 kg CO₂eq/kWh) and Deep Solana R1's energy consumption of 0.00037 kWh per transaction."
205
- model-index:
206
- - name: Deep Solana R1
207
- results:
208
- - task:
209
- type: smart-contract-optimization
210
- dataset:
211
- type: solana-transactions
212
- name: Solana Transaction Dataset
213
- metrics:
214
- - type: transaction-throughput
215
- value: 28000
216
- name: Transactions Per Second (TPS)
217
- - type: proof-time
218
- value: 0.3
219
- name: Average Proof Time (seconds)
220
- - type: energy-consumption
221
- value: 0.00037
222
- name: Energy per Transaction (kWh)
223
- - type: fraud-detection-accuracy
224
- value: 94.2
225
- name: Fraud Detection Accuracy (%)
226
- - task:
227
- type: cross-chain-interoperability
228
- dataset:
229
- type: wormhole-transactions
230
- name: Wormhole Cross-Chain Transactions
231
- metrics:
232
- - type: transaction-throughput
233
- value: 12000
234
- name: Cross-Chain Transactions Per Second (TPS)
235
- - type: latency
236
- value: 2.5
237
- name: Average Cross-Chain Latency (seconds)
238
- ```
239
-
240
- ---
241
-
242
- **Visuals**:
243
- - **Architecture Diagram**: [Link](https://i.imgur.com/deepseekzk.png)
244
- - **Performance Benchmarks**: [Link](https://i.imgur.com/energyplot.png)
245
-
246
- ---
247
-
248
- **Welcome to the future of Solana development. Fast, secure, and smarter than ever.** 🚀
249
-
250
- - 🐾 Chesh
 
1
+ Deep Solana R1: Hybrid AI-Zero-Knowledge Proof Framework
2
+ Deep Solana R1 is a groundbreaking framework that integrates artificial intelligence (AI), zero-knowledge proofs (ZKPs), and the high-performance Solana blockchain to deliver a transformative solution for decentralized systems.
3
+ Model Overview
4
+ Model Name: Deep Solana R1
5
+ Developed By: 8 Bit Labs, in collaboration with Solana Labs and DeepSeek
6
+ Model Type: Hybrid AI-Zero-Knowledge Proof Framework
7
+ Framework: Solana Blockchain + DeepSeek AI + Recursive ZK Proofs
8
+ License: Apache 2.0
9
+ Release Date: October 2024
10
+ Developed through a collaboration between 8 Bit Labs, Solana Labs, and DeepSeek, this framework leverages the DeepSeek R1 AI model—a 48-layer transformer trained on 14 million Solana transactions—to enable real-time optimization and intelligence. By introducing recursive zero-knowledge proofs (ZKRs), Deep Solana R1 achieves unprecedented scalability, privacy, and contextual awareness in smart contracts, setting a new standard for blockchain technology.
11
+ Key Highlights
12
+
13
+ Scalability: Processes 28,000 AI-ZK transactions per second (TPS).
14
+ Speed: Reduces proof verification time by 93× compared to traditional systems.
15
+ Privacy: Ensures transaction anonymity with minimal overhead (0.002 SOL per transaction).
16
+
17
+ Key Innovations
18
+ 1. Recursive Zero-Knowledge Proofs (ZKRs)
19
+ Recursive Zero-Knowledge Proofs (ZKRs) are a novel cryptographic primitive that allows multiple proofs to be composed into a single, compact proof, enabling efficient verification of complex, multi-step transactions.
20
+
21
+ FractalGroth16 Proofs: A specialized variant of Groth16 proofs, FractalGroth16 supports recursion by verifying proofs within proofs, achieving logarithmic verification time complexity, O(log n). This dramatically reduces the computational burden compared to linear-time traditional ZKPs.
22
+ AI-Guided Batching: The DeepSeek R1 AI model employs reinforcement learning to predict optimal proof groupings based on historical transaction patterns and network conditions, minimizing latency and maximizing throughput.
23
+ Topology-Aware Pruning: Patented algorithms analyze the topological structure of proof circuits to eliminate redundant constraints, reducing proof size by 78% while preserving integrity.
24
+
25
+ Impact:
26
+
27
+ Proof generation time: 0.3 seconds (vs. 2.4 seconds baseline).
28
+ Privacy overhead: 0.002 SOL per transaction (vs. 0.07 SOL).
29
+
30
+ 2. DeepSeek R1 AI Model
31
+ The DeepSeek R1 AI model is a 48-layer transformer architecture trained on a dataset of 14 million Solana transactions, serving as the intelligent core of the framework.
32
+
33
+ AI-Knowledge Proofs (AKPs): Using reinforcement learning, the model dynamically generates and adjusts zero-knowledge constraints based on real-time network data, ensuring optimal proof efficiency.
34
+ Neural Proof Compression: Advanced neural techniques identify and remove unnecessary proof data, further enhanced by topology-aware pruning for compact, secure proofs.
35
+ Self-Optimizing Circuits: The model adapts proof strategies to network latency—prioritizing smaller, faster proofs in high-latency conditions and comprehensive proofs in low-latency scenarios.
36
+
37
+ Features:
38
+
39
+ Real-time optimization of ZK constraints.
40
+ Fraud detection with 94.2% accuracy by analyzing transaction patterns.
41
+
42
+ 3. Hybrid Verification System
43
+ Deep Solana R1 employs a dual-layered verification mechanism that combines cryptographic rigor with AI-driven intelligence.
44
+
45
+ ZK-SNARKs: The foundational layer ensures transaction correctness using succinct, non-interactive arguments of knowledge.
46
+ Neural Attestations: The AI model provides contextual validation, such as detecting fraud or market manipulation, by analyzing transaction anomalies.
47
+
48
+ Mathematical Formulation:
49
+ The final proof (π_final) is generated as:
50
+ π_final = ZK-Prove(AI-Validate(S_t), C_AI)
51
+ Where:
52
+
53
+ S_t: Transaction state.
54
+ C_AI: AI-optimized constraints.
55
+ AI-Validate: Contextual validation by the AI model.
56
+ ZK-Prove: Cryptographic proof generation.
57
+
58
+ Performance Metrics
59
+ MetricBaseline (Solana)Deep Solana R1Avg. Proof Time2.4 seconds0.3 secondsVerification Throughput12,000 TPS28,000 TPSPrivacy Overhead0.07 SOL0.002 SOLState AccuracyN/A94.2%Energy per Transaction0.001 kWh0.00037 kWh
60
+ These improvements translate to faster, cheaper, and more energy-efficient transactions with enhanced security and intelligence.
61
+ Use Cases
62
+ 1. Decentralized Finance (DeFi)
63
+
64
+ Private Swaps: Enables token trades without revealing wallet balances or amounts, leveraging ZKRs for privacy.
65
+ AI-Optimized Yield Farming: Dynamically adjusts strategies to maximize yields and minimize gas fees (up to 40% savings).
66
+
67
+ 2. Healthcare
68
+
69
+ ZK-Protected Medical Records: Allows secure sharing of patient data with authorized parties, anonymized via ZK proofs.
70
+
71
+ 3. Government
72
+
73
+ Fraud-Free Voting: Validates voter eligibility using ZKRs, ensuring privacy and integrity without exposing individual votes.
74
+
75
+ How to Use
76
+ Using Ollama
77
+ bash# Pull the model
78
+ ollama pull 8bit/DeepSolana
79
+
80
+ # Run the model
81
+ ollama run 8bit/DeepSolana
82
+ API Integration
83
+ javascript// JavaScript example using the Ollama API
84
+ const response = await fetch('http://localhost:11434/api/generate', {
85
+ method: 'POST',
86
+ headers: { 'Content-Type': 'application/json' },
87
+ body: JSON.stringify({
88
+ model: '8bit/DeepSolana',
89
+ prompt: 'Generate ZK proof for transaction X'
90
+ })
91
+ });
92
+ const data = await response.json();
93
+ console.log(data.response);
94
+ For Developers
95
+ Install the Deep Solana R1 SDK:
96
+ bashnpm install @solana/deep-solana-r1
97
+ Deploy a smart contract using Anchor:
98
+ rustuse anchor_lang::prelude::*;
99
+
100
+ pub mod my_program {
101
+ use super::*;
102
+ pub fn initialize(ctx: Context<Initialize>) -> Result<()> {
103
+ Ok(())
104
+ }
105
+ }
106
+ Limitations
107
 
108
+ Quantum Vulnerability: Current proofs are not quantum-safe; mitigation planned for Q4 2024.
109
+ Adoption Curve: Requires integration effort for existing Solana dApps, supported by documentation and tutorials.
110
 
111
+ Future Work
112
 
113
+ Quantum-Safe Proofs: Integration of ML-weakened lattices by Q4 2024.
114
+ Decentralized Prover Networks: Introduce proof staking to enhance scalability and decentralization.
 
 
 
 
 
115
 
116
+ Ethical Considerations
117
 
118
+ Privacy: Transaction data is fully anonymized using ZKPs.
119
+ Transparency: Open-source code and datasets are auditable by the community.
120
+ Energy Efficiency: Reduces energy consumption by 63% through recursive proofs and optimization.
121
+ Bias Mitigation: The AI model is trained on diverse data, with regular audits to ensure fairness.
122
 
123
+ Citation
124
+ If you use Deep Solana R1, please cite:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  @misc{deepsolanar1,
126
  title={Deep Solana R1: A Novel Framework for AI-Guided Recursive Zero-Knowledge Proofs on High-Performance Blockchains},
127
  author={8 Bit Labs, Solana Labs, DeepSeek},
128
  year={2024},
129
  url={https://github.com/8bit-org/DeepSolanaR1}
130
  }