File size: 5,433 Bytes
f1e6b80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""Implement an LLM driven browser."""

from __future__ import annotations

import warnings
from typing import Any, Dict, List, Optional

from langchain_core._api import deprecated
from langchain_core.caches import BaseCache as BaseCache
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.callbacks import Callbacks as Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import Runnable
from pydantic import ConfigDict, model_validator

from langchain.chains.base import Chain
from langchain.chains.natbot.prompt import PROMPT


@deprecated(
    since="0.2.13",
    message=(
        "Importing NatBotChain from langchain is deprecated and will be removed in "
        "langchain 1.0. Please import from langchain_community instead: "
        "from langchain_community.chains.natbot import NatBotChain. "
        "You may need to pip install -U langchain-community."
    ),
    removal="1.0",
)
class NatBotChain(Chain):
    """Implement an LLM driven browser.

    **Security Note**: This toolkit provides code to control a web-browser.

        The web-browser can be used to navigate to:

        - Any URL (including any internal network URLs)
        - And local files

        Exercise care if exposing this chain to end-users. Control who is able to
        access and use this chain, and isolate the network access of the server
        that hosts this chain.

        See https://python.langchain.com/docs/security for more information.

    Example:
        .. code-block:: python

            from langchain.chains import NatBotChain
            natbot = NatBotChain.from_default("Buy me a new hat.")
    """

    llm_chain: Runnable
    objective: str
    """Objective that NatBot is tasked with completing."""
    llm: Optional[BaseLanguageModel] = None
    """[Deprecated] LLM wrapper to use."""
    input_url_key: str = "url"  #: :meta private:
    input_browser_content_key: str = "browser_content"  #: :meta private:
    previous_command: str = ""  #: :meta private:
    output_key: str = "command"  #: :meta private:

    model_config = ConfigDict(
        arbitrary_types_allowed=True,
        extra="forbid",
    )

    @model_validator(mode="before")
    @classmethod
    def raise_deprecation(cls, values: Dict) -> Any:
        if "llm" in values:
            warnings.warn(
                "Directly instantiating an NatBotChain with an llm is deprecated. "
                "Please instantiate with llm_chain argument or using the from_llm "
                "class method."
            )
            if "llm_chain" not in values and values["llm"] is not None:
                values["llm_chain"] = PROMPT | values["llm"] | StrOutputParser()
        return values

    @classmethod
    def from_default(cls, objective: str, **kwargs: Any) -> NatBotChain:
        """Load with default LLMChain."""
        raise NotImplementedError(
            "This method is no longer implemented. Please use from_llm."
            "llm = OpenAI(temperature=0.5, best_of=10, n=3, max_tokens=50)"
            "For example, NatBotChain.from_llm(llm, objective)"
        )

    @classmethod
    def from_llm(
        cls, llm: BaseLanguageModel, objective: str, **kwargs: Any
    ) -> NatBotChain:
        """Load from LLM."""
        llm_chain = PROMPT | llm | StrOutputParser()
        return cls(llm_chain=llm_chain, objective=objective, **kwargs)

    @property
    def input_keys(self) -> List[str]:
        """Expect url and browser content.

        :meta private:
        """
        return [self.input_url_key, self.input_browser_content_key]

    @property
    def output_keys(self) -> List[str]:
        """Return command.

        :meta private:
        """
        return [self.output_key]

    def _call(
        self,
        inputs: Dict[str, str],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        url = inputs[self.input_url_key]
        browser_content = inputs[self.input_browser_content_key]
        llm_cmd = self.llm_chain.invoke(
            {
                "objective": self.objective,
                "url": url[:100],
                "previous_command": self.previous_command,
                "browser_content": browser_content[:4500],
            },
            config={"callbacks": _run_manager.get_child()},
        )
        llm_cmd = llm_cmd.strip()
        self.previous_command = llm_cmd
        return {self.output_key: llm_cmd}

    def execute(self, url: str, browser_content: str) -> str:
        """Figure out next browser command to run.

        Args:
            url: URL of the site currently on.
            browser_content: Content of the page as currently displayed by the browser.

        Returns:
            Next browser command to run.

        Example:
            .. code-block:: python

                browser_content = "...."
                llm_command = natbot.run("www.google.com", browser_content)
        """
        _inputs = {
            self.input_url_key: url,
            self.input_browser_content_key: browser_content,
        }
        return self(_inputs)[self.output_key]

    @property
    def _chain_type(self) -> str:
        return "nat_bot_chain"


NatBotChain.model_rebuild()