|
|
"""Chain that carries on a conversation and calls an LLM.""" |
|
|
|
|
|
from typing import List |
|
|
|
|
|
from langchain_core._api import deprecated |
|
|
from langchain_core.memory import BaseMemory |
|
|
from langchain_core.prompts import BasePromptTemplate |
|
|
from pydantic import ConfigDict, Field, model_validator |
|
|
from typing_extensions import Self |
|
|
|
|
|
from langchain.chains.conversation.prompt import PROMPT |
|
|
from langchain.chains.llm import LLMChain |
|
|
from langchain.memory.buffer import ConversationBufferMemory |
|
|
|
|
|
|
|
|
@deprecated( |
|
|
since="0.2.7", |
|
|
alternative=( |
|
|
"RunnableWithMessageHistory: " |
|
|
"https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html" |
|
|
), |
|
|
removal="1.0", |
|
|
) |
|
|
class ConversationChain(LLMChain): |
|
|
"""Chain to have a conversation and load context from memory. |
|
|
|
|
|
This class is deprecated in favor of ``RunnableWithMessageHistory``. Please refer |
|
|
to this tutorial for more detail: https://python.langchain.com/docs/tutorials/chatbot/ |
|
|
|
|
|
``RunnableWithMessageHistory`` offers several benefits, including: |
|
|
|
|
|
- Stream, batch, and async support; |
|
|
- More flexible memory handling, including the ability to manage memory |
|
|
outside the chain; |
|
|
- Support for multiple threads. |
|
|
|
|
|
Below is a minimal implementation, analogous to using ``ConversationChain`` with |
|
|
the default ``ConversationBufferMemory``: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
from langchain_core.chat_history import InMemoryChatMessageHistory |
|
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
|
from langchain_openai import ChatOpenAI |
|
|
|
|
|
|
|
|
store = {} # memory is maintained outside the chain |
|
|
|
|
|
def get_session_history(session_id: str) -> InMemoryChatMessageHistory: |
|
|
if session_id not in store: |
|
|
store[session_id] = InMemoryChatMessageHistory() |
|
|
return store[session_id] |
|
|
|
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo-0125") |
|
|
|
|
|
chain = RunnableWithMessageHistory(llm, get_session_history) |
|
|
chain.invoke( |
|
|
"Hi I'm Bob.", |
|
|
config={"configurable": {"session_id": "1"}}, |
|
|
) # session_id determines thread |
|
|
Memory objects can also be incorporated into the ``get_session_history`` callable: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
from langchain.memory import ConversationBufferWindowMemory |
|
|
from langchain_core.chat_history import InMemoryChatMessageHistory |
|
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
|
from langchain_openai import ChatOpenAI |
|
|
|
|
|
|
|
|
store = {} # memory is maintained outside the chain |
|
|
|
|
|
def get_session_history(session_id: str) -> InMemoryChatMessageHistory: |
|
|
if session_id not in store: |
|
|
store[session_id] = InMemoryChatMessageHistory() |
|
|
return store[session_id] |
|
|
|
|
|
memory = ConversationBufferWindowMemory( |
|
|
chat_memory=store[session_id], |
|
|
k=3, |
|
|
return_messages=True, |
|
|
) |
|
|
assert len(memory.memory_variables) == 1 |
|
|
key = memory.memory_variables[0] |
|
|
messages = memory.load_memory_variables({})[key] |
|
|
store[session_id] = InMemoryChatMessageHistory(messages=messages) |
|
|
return store[session_id] |
|
|
|
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo-0125") |
|
|
|
|
|
chain = RunnableWithMessageHistory(llm, get_session_history) |
|
|
chain.invoke( |
|
|
"Hi I'm Bob.", |
|
|
config={"configurable": {"session_id": "1"}}, |
|
|
) # session_id determines thread |
|
|
|
|
|
Example: |
|
|
.. code-block:: python |
|
|
|
|
|
from langchain.chains import ConversationChain |
|
|
from langchain_community.llms import OpenAI |
|
|
|
|
|
conversation = ConversationChain(llm=OpenAI()) |
|
|
""" |
|
|
|
|
|
memory: BaseMemory = Field(default_factory=ConversationBufferMemory) |
|
|
"""Default memory store.""" |
|
|
prompt: BasePromptTemplate = PROMPT |
|
|
"""Default conversation prompt to use.""" |
|
|
|
|
|
input_key: str = "input" |
|
|
output_key: str = "response" |
|
|
|
|
|
model_config = ConfigDict( |
|
|
arbitrary_types_allowed=True, |
|
|
extra="forbid", |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def is_lc_serializable(cls) -> bool: |
|
|
return False |
|
|
|
|
|
@property |
|
|
def input_keys(self) -> List[str]: |
|
|
"""Use this since so some prompt vars come from history.""" |
|
|
return [self.input_key] |
|
|
|
|
|
@model_validator(mode="after") |
|
|
def validate_prompt_input_variables(self) -> Self: |
|
|
"""Validate that prompt input variables are consistent.""" |
|
|
memory_keys = self.memory.memory_variables |
|
|
input_key = self.input_key |
|
|
if input_key in memory_keys: |
|
|
raise ValueError( |
|
|
f"The input key {input_key} was also found in the memory keys " |
|
|
f"({memory_keys}) - please provide keys that don't overlap." |
|
|
) |
|
|
prompt_variables = self.prompt.input_variables |
|
|
expected_keys = memory_keys + [input_key] |
|
|
if set(expected_keys) != set(prompt_variables): |
|
|
raise ValueError( |
|
|
"Got unexpected prompt input variables. The prompt expects " |
|
|
f"{prompt_variables}, but got {memory_keys} as inputs from " |
|
|
f"memory, and {input_key} as the normal input key." |
|
|
) |
|
|
return self |
|
|
|