|
|
"""Chain that just formats a prompt and calls an LLM.""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import warnings |
|
|
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast |
|
|
|
|
|
from langchain_core._api import deprecated |
|
|
from langchain_core.callbacks import ( |
|
|
AsyncCallbackManager, |
|
|
AsyncCallbackManagerForChainRun, |
|
|
CallbackManager, |
|
|
CallbackManagerForChainRun, |
|
|
Callbacks, |
|
|
) |
|
|
from langchain_core.language_models import ( |
|
|
BaseLanguageModel, |
|
|
LanguageModelInput, |
|
|
) |
|
|
from langchain_core.messages import BaseMessage |
|
|
from langchain_core.output_parsers import BaseLLMOutputParser, StrOutputParser |
|
|
from langchain_core.outputs import ChatGeneration, Generation, LLMResult |
|
|
from langchain_core.prompt_values import PromptValue |
|
|
from langchain_core.prompts import BasePromptTemplate, PromptTemplate |
|
|
from langchain_core.runnables import ( |
|
|
Runnable, |
|
|
RunnableBinding, |
|
|
RunnableBranch, |
|
|
RunnableWithFallbacks, |
|
|
) |
|
|
from langchain_core.runnables.configurable import DynamicRunnable |
|
|
from langchain_core.utils.input import get_colored_text |
|
|
from pydantic import ConfigDict, Field |
|
|
|
|
|
from langchain.chains.base import Chain |
|
|
|
|
|
|
|
|
@deprecated( |
|
|
since="0.1.17", |
|
|
alternative="RunnableSequence, e.g., `prompt | llm`", |
|
|
removal="1.0", |
|
|
) |
|
|
class LLMChain(Chain): |
|
|
"""Chain to run queries against LLMs. |
|
|
|
|
|
This class is deprecated. See below for an example implementation using |
|
|
LangChain runnables: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
from langchain_core.output_parsers import StrOutputParser |
|
|
from langchain_core.prompts import PromptTemplate |
|
|
from langchain_openai import OpenAI |
|
|
|
|
|
prompt_template = "Tell me a {adjective} joke" |
|
|
prompt = PromptTemplate( |
|
|
input_variables=["adjective"], template=prompt_template |
|
|
) |
|
|
llm = OpenAI() |
|
|
chain = prompt | llm | StrOutputParser() |
|
|
|
|
|
chain.invoke("your adjective here") |
|
|
|
|
|
Example: |
|
|
.. code-block:: python |
|
|
|
|
|
from langchain.chains import LLMChain |
|
|
from langchain_community.llms import OpenAI |
|
|
from langchain_core.prompts import PromptTemplate |
|
|
prompt_template = "Tell me a {adjective} joke" |
|
|
prompt = PromptTemplate( |
|
|
input_variables=["adjective"], template=prompt_template |
|
|
) |
|
|
llm = LLMChain(llm=OpenAI(), prompt=prompt) |
|
|
""" |
|
|
|
|
|
@classmethod |
|
|
def is_lc_serializable(self) -> bool: |
|
|
return True |
|
|
|
|
|
prompt: BasePromptTemplate |
|
|
"""Prompt object to use.""" |
|
|
llm: Union[ |
|
|
Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage] |
|
|
] |
|
|
"""Language model to call.""" |
|
|
output_key: str = "text" |
|
|
output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser) |
|
|
"""Output parser to use. |
|
|
Defaults to one that takes the most likely string but does not change it |
|
|
otherwise.""" |
|
|
return_final_only: bool = True |
|
|
"""Whether to return only the final parsed result. Defaults to True. |
|
|
If false, will return a bunch of extra information about the generation.""" |
|
|
llm_kwargs: dict = Field(default_factory=dict) |
|
|
|
|
|
model_config = ConfigDict( |
|
|
arbitrary_types_allowed=True, |
|
|
extra="forbid", |
|
|
) |
|
|
|
|
|
@property |
|
|
def input_keys(self) -> List[str]: |
|
|
"""Will be whatever keys the prompt expects. |
|
|
|
|
|
:meta private: |
|
|
""" |
|
|
return self.prompt.input_variables |
|
|
|
|
|
@property |
|
|
def output_keys(self) -> List[str]: |
|
|
"""Will always return text key. |
|
|
|
|
|
:meta private: |
|
|
""" |
|
|
if self.return_final_only: |
|
|
return [self.output_key] |
|
|
else: |
|
|
return [self.output_key, "full_generation"] |
|
|
|
|
|
def _call( |
|
|
self, |
|
|
inputs: Dict[str, Any], |
|
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
|
) -> Dict[str, str]: |
|
|
response = self.generate([inputs], run_manager=run_manager) |
|
|
return self.create_outputs(response)[0] |
|
|
|
|
|
def generate( |
|
|
self, |
|
|
input_list: List[Dict[str, Any]], |
|
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
|
) -> LLMResult: |
|
|
"""Generate LLM result from inputs.""" |
|
|
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) |
|
|
callbacks = run_manager.get_child() if run_manager else None |
|
|
if isinstance(self.llm, BaseLanguageModel): |
|
|
return self.llm.generate_prompt( |
|
|
prompts, |
|
|
stop, |
|
|
callbacks=callbacks, |
|
|
**self.llm_kwargs, |
|
|
) |
|
|
else: |
|
|
results = self.llm.bind(stop=stop, **self.llm_kwargs).batch( |
|
|
cast(List, prompts), {"callbacks": callbacks} |
|
|
) |
|
|
generations: List[List[Generation]] = [] |
|
|
for res in results: |
|
|
if isinstance(res, BaseMessage): |
|
|
generations.append([ChatGeneration(message=res)]) |
|
|
else: |
|
|
generations.append([Generation(text=res)]) |
|
|
return LLMResult(generations=generations) |
|
|
|
|
|
async def agenerate( |
|
|
self, |
|
|
input_list: List[Dict[str, Any]], |
|
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
|
) -> LLMResult: |
|
|
"""Generate LLM result from inputs.""" |
|
|
prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager) |
|
|
callbacks = run_manager.get_child() if run_manager else None |
|
|
if isinstance(self.llm, BaseLanguageModel): |
|
|
return await self.llm.agenerate_prompt( |
|
|
prompts, |
|
|
stop, |
|
|
callbacks=callbacks, |
|
|
**self.llm_kwargs, |
|
|
) |
|
|
else: |
|
|
results = await self.llm.bind(stop=stop, **self.llm_kwargs).abatch( |
|
|
cast(List, prompts), {"callbacks": callbacks} |
|
|
) |
|
|
generations: List[List[Generation]] = [] |
|
|
for res in results: |
|
|
if isinstance(res, BaseMessage): |
|
|
generations.append([ChatGeneration(message=res)]) |
|
|
else: |
|
|
generations.append([Generation(text=res)]) |
|
|
return LLMResult(generations=generations) |
|
|
|
|
|
def prep_prompts( |
|
|
self, |
|
|
input_list: List[Dict[str, Any]], |
|
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
|
) -> Tuple[List[PromptValue], Optional[List[str]]]: |
|
|
"""Prepare prompts from inputs.""" |
|
|
stop = None |
|
|
if len(input_list) == 0: |
|
|
return [], stop |
|
|
if "stop" in input_list[0]: |
|
|
stop = input_list[0]["stop"] |
|
|
prompts = [] |
|
|
for inputs in input_list: |
|
|
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} |
|
|
prompt = self.prompt.format_prompt(**selected_inputs) |
|
|
_colored_text = get_colored_text(prompt.to_string(), "green") |
|
|
_text = "Prompt after formatting:\n" + _colored_text |
|
|
if run_manager: |
|
|
run_manager.on_text(_text, end="\n", verbose=self.verbose) |
|
|
if "stop" in inputs and inputs["stop"] != stop: |
|
|
raise ValueError( |
|
|
"If `stop` is present in any inputs, should be present in all." |
|
|
) |
|
|
prompts.append(prompt) |
|
|
return prompts, stop |
|
|
|
|
|
async def aprep_prompts( |
|
|
self, |
|
|
input_list: List[Dict[str, Any]], |
|
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
|
) -> Tuple[List[PromptValue], Optional[List[str]]]: |
|
|
"""Prepare prompts from inputs.""" |
|
|
stop = None |
|
|
if len(input_list) == 0: |
|
|
return [], stop |
|
|
if "stop" in input_list[0]: |
|
|
stop = input_list[0]["stop"] |
|
|
prompts = [] |
|
|
for inputs in input_list: |
|
|
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} |
|
|
prompt = self.prompt.format_prompt(**selected_inputs) |
|
|
_colored_text = get_colored_text(prompt.to_string(), "green") |
|
|
_text = "Prompt after formatting:\n" + _colored_text |
|
|
if run_manager: |
|
|
await run_manager.on_text(_text, end="\n", verbose=self.verbose) |
|
|
if "stop" in inputs and inputs["stop"] != stop: |
|
|
raise ValueError( |
|
|
"If `stop` is present in any inputs, should be present in all." |
|
|
) |
|
|
prompts.append(prompt) |
|
|
return prompts, stop |
|
|
|
|
|
def apply( |
|
|
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None |
|
|
) -> List[Dict[str, str]]: |
|
|
"""Utilize the LLM generate method for speed gains.""" |
|
|
callback_manager = CallbackManager.configure( |
|
|
callbacks, self.callbacks, self.verbose |
|
|
) |
|
|
run_manager = callback_manager.on_chain_start( |
|
|
None, |
|
|
{"input_list": input_list}, |
|
|
name=self.get_name(), |
|
|
) |
|
|
try: |
|
|
response = self.generate(input_list, run_manager=run_manager) |
|
|
except BaseException as e: |
|
|
run_manager.on_chain_error(e) |
|
|
raise e |
|
|
outputs = self.create_outputs(response) |
|
|
run_manager.on_chain_end({"outputs": outputs}) |
|
|
return outputs |
|
|
|
|
|
async def aapply( |
|
|
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None |
|
|
) -> List[Dict[str, str]]: |
|
|
"""Utilize the LLM generate method for speed gains.""" |
|
|
callback_manager = AsyncCallbackManager.configure( |
|
|
callbacks, self.callbacks, self.verbose |
|
|
) |
|
|
run_manager = await callback_manager.on_chain_start( |
|
|
None, |
|
|
{"input_list": input_list}, |
|
|
name=self.get_name(), |
|
|
) |
|
|
try: |
|
|
response = await self.agenerate(input_list, run_manager=run_manager) |
|
|
except BaseException as e: |
|
|
await run_manager.on_chain_error(e) |
|
|
raise e |
|
|
outputs = self.create_outputs(response) |
|
|
await run_manager.on_chain_end({"outputs": outputs}) |
|
|
return outputs |
|
|
|
|
|
@property |
|
|
def _run_output_key(self) -> str: |
|
|
return self.output_key |
|
|
|
|
|
def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]: |
|
|
"""Create outputs from response.""" |
|
|
result = [ |
|
|
|
|
|
{ |
|
|
self.output_key: self.output_parser.parse_result(generation), |
|
|
"full_generation": generation, |
|
|
} |
|
|
for generation in llm_result.generations |
|
|
] |
|
|
if self.return_final_only: |
|
|
result = [{self.output_key: r[self.output_key]} for r in result] |
|
|
return result |
|
|
|
|
|
async def _acall( |
|
|
self, |
|
|
inputs: Dict[str, Any], |
|
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
|
) -> Dict[str, str]: |
|
|
response = await self.agenerate([inputs], run_manager=run_manager) |
|
|
return self.create_outputs(response)[0] |
|
|
|
|
|
def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: |
|
|
"""Format prompt with kwargs and pass to LLM. |
|
|
|
|
|
Args: |
|
|
callbacks: Callbacks to pass to LLMChain |
|
|
**kwargs: Keys to pass to prompt template. |
|
|
|
|
|
Returns: |
|
|
Completion from LLM. |
|
|
|
|
|
Example: |
|
|
.. code-block:: python |
|
|
|
|
|
completion = llm.predict(adjective="funny") |
|
|
""" |
|
|
return self(kwargs, callbacks=callbacks)[self.output_key] |
|
|
|
|
|
async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: |
|
|
"""Format prompt with kwargs and pass to LLM. |
|
|
|
|
|
Args: |
|
|
callbacks: Callbacks to pass to LLMChain |
|
|
**kwargs: Keys to pass to prompt template. |
|
|
|
|
|
Returns: |
|
|
Completion from LLM. |
|
|
|
|
|
Example: |
|
|
.. code-block:: python |
|
|
|
|
|
completion = llm.predict(adjective="funny") |
|
|
""" |
|
|
return (await self.acall(kwargs, callbacks=callbacks))[self.output_key] |
|
|
|
|
|
def predict_and_parse( |
|
|
self, callbacks: Callbacks = None, **kwargs: Any |
|
|
) -> Union[str, List[str], Dict[str, Any]]: |
|
|
"""Call predict and then parse the results.""" |
|
|
warnings.warn( |
|
|
"The predict_and_parse method is deprecated, " |
|
|
"instead pass an output parser directly to LLMChain." |
|
|
) |
|
|
result = self.predict(callbacks=callbacks, **kwargs) |
|
|
if self.prompt.output_parser is not None: |
|
|
return self.prompt.output_parser.parse(result) |
|
|
else: |
|
|
return result |
|
|
|
|
|
async def apredict_and_parse( |
|
|
self, callbacks: Callbacks = None, **kwargs: Any |
|
|
) -> Union[str, List[str], Dict[str, str]]: |
|
|
"""Call apredict and then parse the results.""" |
|
|
warnings.warn( |
|
|
"The apredict_and_parse method is deprecated, " |
|
|
"instead pass an output parser directly to LLMChain." |
|
|
) |
|
|
result = await self.apredict(callbacks=callbacks, **kwargs) |
|
|
if self.prompt.output_parser is not None: |
|
|
return self.prompt.output_parser.parse(result) |
|
|
else: |
|
|
return result |
|
|
|
|
|
def apply_and_parse( |
|
|
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None |
|
|
) -> Sequence[Union[str, List[str], Dict[str, str]]]: |
|
|
"""Call apply and then parse the results.""" |
|
|
warnings.warn( |
|
|
"The apply_and_parse method is deprecated, " |
|
|
"instead pass an output parser directly to LLMChain." |
|
|
) |
|
|
result = self.apply(input_list, callbacks=callbacks) |
|
|
return self._parse_generation(result) |
|
|
|
|
|
def _parse_generation( |
|
|
self, generation: List[Dict[str, str]] |
|
|
) -> Sequence[Union[str, List[str], Dict[str, str]]]: |
|
|
if self.prompt.output_parser is not None: |
|
|
return [ |
|
|
self.prompt.output_parser.parse(res[self.output_key]) |
|
|
for res in generation |
|
|
] |
|
|
else: |
|
|
return generation |
|
|
|
|
|
async def aapply_and_parse( |
|
|
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None |
|
|
) -> Sequence[Union[str, List[str], Dict[str, str]]]: |
|
|
"""Call apply and then parse the results.""" |
|
|
warnings.warn( |
|
|
"The aapply_and_parse method is deprecated, " |
|
|
"instead pass an output parser directly to LLMChain." |
|
|
) |
|
|
result = await self.aapply(input_list, callbacks=callbacks) |
|
|
return self._parse_generation(result) |
|
|
|
|
|
@property |
|
|
def _chain_type(self) -> str: |
|
|
return "llm_chain" |
|
|
|
|
|
@classmethod |
|
|
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain: |
|
|
"""Create LLMChain from LLM and template.""" |
|
|
prompt_template = PromptTemplate.from_template(template) |
|
|
return cls(llm=llm, prompt=prompt_template) |
|
|
|
|
|
def _get_num_tokens(self, text: str) -> int: |
|
|
return _get_language_model(self.llm).get_num_tokens(text) |
|
|
|
|
|
|
|
|
def _get_language_model(llm_like: Runnable) -> BaseLanguageModel: |
|
|
if isinstance(llm_like, BaseLanguageModel): |
|
|
return llm_like |
|
|
elif isinstance(llm_like, RunnableBinding): |
|
|
return _get_language_model(llm_like.bound) |
|
|
elif isinstance(llm_like, RunnableWithFallbacks): |
|
|
return _get_language_model(llm_like.runnable) |
|
|
elif isinstance(llm_like, (RunnableBranch, DynamicRunnable)): |
|
|
return _get_language_model(llm_like.default) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Unable to extract BaseLanguageModel from llm_like object of type " |
|
|
f"{type(llm_like)}" |
|
|
) |
|
|
|