Model card auto-generated by SimpleTuner
Browse files
README.md
CHANGED
|
@@ -59,13 +59,13 @@ You may reuse the base model text encoder for inference.
|
|
| 59 |
## Training settings
|
| 60 |
|
| 61 |
- Training epochs: 0
|
| 62 |
-
- Training steps:
|
| 63 |
-
- Learning rate: 0.
|
| 64 |
-
- Learning rate schedule:
|
| 65 |
- Warmup steps: 100
|
| 66 |
- Max grad norm: 2.0
|
| 67 |
-
- Effective batch size:
|
| 68 |
-
- Micro-batch size:
|
| 69 |
- Gradient accumulation steps: 1
|
| 70 |
- Number of GPUs: 1
|
| 71 |
- Gradient checkpointing: True
|
|
@@ -105,7 +105,7 @@ You may reuse the base model text encoder for inference.
|
|
| 105 |
### my-dataset-256
|
| 106 |
- Repeats: 10
|
| 107 |
- Total number of images: 71
|
| 108 |
-
- Total number of aspect buckets:
|
| 109 |
- Resolution: 0.065536 megapixels
|
| 110 |
- Cropped: False
|
| 111 |
- Crop style: None
|
|
@@ -123,7 +123,7 @@ You may reuse the base model text encoder for inference.
|
|
| 123 |
### my-dataset-512
|
| 124 |
- Repeats: 10
|
| 125 |
- Total number of images: 71
|
| 126 |
-
- Total number of aspect buckets:
|
| 127 |
- Resolution: 0.262144 megapixels
|
| 128 |
- Cropped: False
|
| 129 |
- Crop style: None
|
|
@@ -141,7 +141,7 @@ You may reuse the base model text encoder for inference.
|
|
| 141 |
### my-dataset-768
|
| 142 |
- Repeats: 10
|
| 143 |
- Total number of images: 71
|
| 144 |
-
- Total number of aspect buckets:
|
| 145 |
- Resolution: 0.589824 megapixels
|
| 146 |
- Cropped: False
|
| 147 |
- Crop style: None
|
|
@@ -177,7 +177,7 @@ You may reuse the base model text encoder for inference.
|
|
| 177 |
### my-dataset-1440
|
| 178 |
- Repeats: 10
|
| 179 |
- Total number of images: 71
|
| 180 |
-
- Total number of aspect buckets:
|
| 181 |
- Resolution: 2.0736 megapixels
|
| 182 |
- Cropped: False
|
| 183 |
- Crop style: None
|
|
|
|
| 59 |
## Training settings
|
| 60 |
|
| 61 |
- Training epochs: 0
|
| 62 |
+
- Training steps: 500
|
| 63 |
+
- Learning rate: 0.0005
|
| 64 |
+
- Learning rate schedule: cosine_with_restarts
|
| 65 |
- Warmup steps: 100
|
| 66 |
- Max grad norm: 2.0
|
| 67 |
+
- Effective batch size: 8
|
| 68 |
+
- Micro-batch size: 8
|
| 69 |
- Gradient accumulation steps: 1
|
| 70 |
- Number of GPUs: 1
|
| 71 |
- Gradient checkpointing: True
|
|
|
|
| 105 |
### my-dataset-256
|
| 106 |
- Repeats: 10
|
| 107 |
- Total number of images: 71
|
| 108 |
+
- Total number of aspect buckets: 3
|
| 109 |
- Resolution: 0.065536 megapixels
|
| 110 |
- Cropped: False
|
| 111 |
- Crop style: None
|
|
|
|
| 123 |
### my-dataset-512
|
| 124 |
- Repeats: 10
|
| 125 |
- Total number of images: 71
|
| 126 |
+
- Total number of aspect buckets: 6
|
| 127 |
- Resolution: 0.262144 megapixels
|
| 128 |
- Cropped: False
|
| 129 |
- Crop style: None
|
|
|
|
| 141 |
### my-dataset-768
|
| 142 |
- Repeats: 10
|
| 143 |
- Total number of images: 71
|
| 144 |
+
- Total number of aspect buckets: 4
|
| 145 |
- Resolution: 0.589824 megapixels
|
| 146 |
- Cropped: False
|
| 147 |
- Crop style: None
|
|
|
|
| 177 |
### my-dataset-1440
|
| 178 |
- Repeats: 10
|
| 179 |
- Total number of images: 71
|
| 180 |
+
- Total number of aspect buckets: 4
|
| 181 |
- Resolution: 2.0736 megapixels
|
| 182 |
- Cropped: False
|
| 183 |
- Crop style: None
|