|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- dense |
|
|
- generated_from_trainer |
|
|
- dataset_size:19210 |
|
|
- loss:CoSENTLoss |
|
|
base_model: deepvk/USER-bge-m3 |
|
|
widget: |
|
|
- source_sentence: Колбаса и сосиски |
|
|
sentences: |
|
|
- Пирог Самокат с сыром и шпинатом, 250 г |
|
|
- Сосиски Самокат, из куриной грудки, 400 г |
|
|
- Суп-лапша Vifon, Ramen, с соевым соусом и морскими водорослями, быстрого приготовления, |
|
|
80 г |
|
|
- source_sentence: кола |
|
|
sentences: |
|
|
- Уха по-карельски Самокат, с сёмгой, 270 г |
|
|
- Кола Самокат, с газом, 1 л |
|
|
- Томатный соус Mutti, с овощами гриль, 400 г |
|
|
- source_sentence: мука |
|
|
sentences: |
|
|
- Фруктовые кусочки ФрутоНяня, Фрутохвостики, яблоко и земляника, с 12 месяцев, |
|
|
15 г |
|
|
- Закуска овощная Balkanika Лютеница икра из печёного перца и баклажана, 360 г |
|
|
- Лапша Big Bon Wok, курица в соусе терияки, быстрого приготовления, 85 г |
|
|
- source_sentence: сок лайма |
|
|
sentences: |
|
|
- Сливки Домик в деревне, 20%, стерилизованные, 475 мл |
|
|
- Томаты Flamenco, сливовидные, 450 г |
|
|
- Сывороточно-молочный напиток Мажитэль, с соком, яблоко, лайм и мята, 950 г |
|
|
- source_sentence: Уксус 9% |
|
|
sentences: |
|
|
- Копчёные перепелиные яйца Самокат, 15 шт. |
|
|
- Сырный соус Самокат, 90 г |
|
|
- Сэндвич Mátes, с индейкой монре, 185 г |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on deepvk/USER-bge-m3 |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) <!-- at revision 0cc6cfe48e260fb0474c753087a69369e88709ae --> |
|
|
- **Maximum Sequence Length:** 8192 tokens |
|
|
- **Output Dimensionality:** 1024 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) |
|
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("pa-shk/USER-bge-m3") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Уксус 9%', |
|
|
'Сэндвич Mátes, с индейкой монре, 185 г', |
|
|
'Копчёные перепелиные яйца Самокат, 15 шт.', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 1024] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities) |
|
|
# tensor([[1.0000, 0.1502, 0.1408], |
|
|
# [0.1502, 1.0000, 0.3048], |
|
|
# [0.1408, 0.3048, 1.0000]]) |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 19,210 training samples |
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence_0 | sentence_1 | label | |
|
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.39 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 21.43 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 0.23</li><li>mean: 0.58</li><li>max: 0.92</li></ul> | |
|
|
* Samples: |
|
|
| sentence_0 | sentence_1 | label | |
|
|
|:----------------------------------|:---------------------------------------------------------------------------------------------|:---------------------------------| |
|
|
| <code>Рыба (треска/минтай)</code> | <code>Филе минтая Бухта изобилия, порционное, без кожи, в панировке, заморозка, 270 г</code> | <code>0.7396379647081771</code> | |
|
|
| <code>Яблоко сушеное</code> | <code>Лапша Big Bon Wok, курица в соусе терияки, быстрого приготовления, 85 г</code> | <code>0.35641088811999194</code> | |
|
|
| <code>Сыр нарезка</code> | <code>Тильзитер Ламбер, 50%, нарезка, 150 г</code> | <code>0.808215987290164</code> | |
|
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "pairwise_cos_sim" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `num_train_epochs`: 5 |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: no |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.0 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch_fused |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `hub_revision`: None |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `liger_kernel_config`: None |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
- `router_mapping`: {} |
|
|
- `learning_rate_mapping`: {} |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | |
|
|
|:------:|:----:|:-------------:| |
|
|
| 1.6611 | 500 | 6.2249 | |
|
|
| 3.3223 | 1000 | 6.0245 | |
|
|
| 4.9834 | 1500 | 5.8235 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.9 |
|
|
- Sentence Transformers: 5.1.0 |
|
|
- Transformers: 4.55.0 |
|
|
- PyTorch: 2.8.0+cu128 |
|
|
- Accelerate: 1.10.0 |
|
|
- Datasets: 3.1.0 |
|
|
- Tokenizers: 0.21.4 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### CoSENTLoss |
|
|
```bibtex |
|
|
@online{kexuefm-8847, |
|
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
|
author={Su Jianlin}, |
|
|
year={2022}, |
|
|
month={Jan}, |
|
|
url={https://kexue.fm/archives/8847}, |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |