Brain-Language Model Alignment: Insights into the Platonic Hypothesis and Intermediate-Layer Advantage
Abstract
Studies suggest that large language models and human brains may converge toward similar internal representations of the world, supporting both the Platonic Representation Hypothesis and the Intermediate-Layer Advantage.
Do brains and language models converge toward the same internal representations of the world? Recent years have seen a rise in studies of neural activations and model alignment. In this work, we review 25 fMRI-based studies published between 2023 and 2025 and explicitly confront their findings with two key hypotheses: (i) the Platonic Representation Hypothesis -- that as models scale and improve, they converge to a representation of the real world, and (ii) the Intermediate-Layer Advantage -- that intermediate (mid-depth) layers often encode richer, more generalizable features. Our findings provide converging evidence that models and brains may share abstract representational structures, supporting both hypotheses and motivating further research on brain-model alignment.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper