MemGovern: Enhancing Code Agents through Learning from Governed Human Experiences
Abstract
MemGovern framework transforms unstructured GitHub data into structured experiential memory for autonomous software engineering agents, improving bug resolution rates through enhanced experience retrieval.
While autonomous software engineering (SWE) agents are reshaping programming paradigms, they currently suffer from a "closed-world" limitation: they attempt to fix bugs from scratch or solely using local context, ignoring the immense historical human experience available on platforms like GitHub. Accessing this open-world experience is hindered by the unstructured and fragmented nature of real-world issue-tracking data. In this paper, we introduce MemGovern, a framework designed to govern and transform raw GitHub data into actionable experiential memory for agents. MemGovern employs experience governance to convert human experience into agent-friendly experience cards and introduces an agentic experience search strategy that enables logic-driven retrieval of human expertise. By producing 135K governed experience cards, MemGovern achieves a significant performance boost, improving resolution rates on the SWE-bench Verified by 4.65%. As a plug-in approach, MemGovern provides a solution for agent-friendly memory infrastructure.
Community
code agent
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Training Versatile Coding Agents in Synthetic Environments (2025)
- SWE-EVO: Benchmarking Coding Agents in Long-Horizon Software Evolution Scenarios (2025)
- Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases (2025)
- EchoTrail-GUI: Building Actionable Memory for GUI Agents via Critic-Guided Self-Exploration (2025)
- Context as a Tool: Context Management for Long-Horizon SWE-Agents (2025)
- DeepCode: Open Agentic Coding (2025)
- NL2Repo-Bench: Towards Long-Horizon Repository Generation Evaluation of Coding Agents (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper