Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWhen Do Neural Nets Outperform Boosted Trees on Tabular Data?
Tabular data is one of the most commonly used types of data in machine learning. Despite recent advances in neural nets (NNs) for tabular data, there is still an active discussion on whether or not NNs generally outperform gradient-boosted decision trees (GBDTs) on tabular data, with several recent works arguing either that GBDTs consistently outperform NNs on tabular data, or vice versa. In this work, we take a step back and question the importance of this debate. To this end, we conduct the largest tabular data analysis to date, comparing 19 algorithms across 176 datasets, and we find that the 'NN vs. GBDT' debate is overemphasized: for a surprisingly high number of datasets, either the performance difference between GBDTs and NNs is negligible, or light hyperparameter tuning on a GBDT is more important than choosing between NNs and GBDTs. A remarkable exception is the recently-proposed prior-data fitted network, TabPFN: although it is effectively limited to training sets of size 3000, we find that it outperforms all other algorithms on average, even when randomly sampling 3000 training datapoints. Next, we analyze dozens of metafeatures to determine what properties of a dataset make NNs or GBDTs better-suited to perform well. For example, we find that GBDTs are much better than NNs at handling skewed or heavy-tailed feature distributions and other forms of dataset irregularities. Our insights act as a guide for practitioners to determine which techniques may work best on their dataset. Finally, with the goal of accelerating tabular data research, we release the TabZilla Benchmark Suite: a collection of the 36 'hardest' of the datasets we study. Our benchmark suite, codebase, and all raw results are available at https://github.com/naszilla/tabzilla.
NRGBoost: Energy-Based Generative Boosted Trees
Despite the rise to dominance of deep learning in unstructured data domains, tree-based methods such as Random Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular data. We explore generative extensions of these popular algorithms with a focus on explicitly modeling the data density (up to a normalization constant), thus enabling other applications besides sampling. As our main contribution we propose an energy-based generative boosting algorithm that is analogous to the second order boosting implemented in popular packages like XGBoost. We show that, despite producing a generative model capable of handling inference tasks over any input variable, our proposed algorithm can achieve similar discriminative performance to GBDT on a number of real world tabular datasets, outperforming alternative generative approaches. At the same time, we show that it is also competitive with neural network based models for sampling.
TabArena: A Living Benchmark for Machine Learning on Tabular Data
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning and investigate the contributions of individual models. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Influence estimation analyzes how changes to the training data can lead to different model predictions; this analysis can help us better understand these predictions, the models making those predictions, and the data sets they're trained on. However, most influence-estimation techniques are designed for deep learning models with continuous parameters. Gradient-boosted decision trees (GBDTs) are a powerful and widely-used class of models; however, these models are black boxes with opaque decision-making processes. In the pursuit of better understanding GBDT predictions and generally improving these models, we adapt recent and popular influence-estimation methods designed for deep learning models to GBDTs. Specifically, we adapt representer-point methods and TracIn, denoting our new methods TREX and BoostIn, respectively; source code is available at https://github.com/jjbrophy47/tree_influence. We compare these methods to LeafInfluence and other baselines using 5 different evaluation measures on 22 real-world data sets with 4 popular GBDT implementations. These experiments give us a comprehensive overview of how different approaches to influence estimation work in GBDT models. We find BoostIn is an efficient influence-estimation method for GBDTs that performs equally well or better than existing work while being four orders of magnitude faster. Our evaluation also suggests the gold-standard approach of leave-one-out (LOO) retraining consistently identifies the single-most influential training example but performs poorly at finding the most influential set of training examples for a given target prediction.
On Gradient Boosted Decision Trees and Neural Rankers: A Case-Study on Short-Video Recommendations at ShareChat
Practitioners who wish to build real-world applications that rely on ranking models, need to decide which modelling paradigm to follow. This is not an easy choice to make, as the research literature on this topic has been shifting in recent years. In particular, whilst Gradient Boosted Decision Trees (GBDTs) have reigned supreme for more than a decade, the flexibility of neural networks has allowed them to catch up, and recent works report accuracy metrics that are on par. Nevertheless, practical systems require considerations beyond mere accuracy metrics to decide on a modelling approach. This work describes our experiences in balancing some of the trade-offs that arise, presenting a case study on a short-video recommendation application. We highlight (1) neural networks' ability to handle large training data size, user- and item-embeddings allows for more accurate models than GBDTs in this setting, and (2) because GBDTs are less reliant on specialised hardware, they can provide an equally accurate model at a lower cost. We believe these findings are of relevance to researchers in both academia and industry, and hope they can inspire practitioners who need to make similar modelling choices in the future.
FairGBM: Gradient Boosting with Fairness Constraints
Tabular data is prevalent in many high-stakes domains, such as financial services or public policy. Gradient Boosted Decision Trees (GBDT) are popular in these settings due to their scalability, performance, and low training cost. While fairness in these domains is a foremost concern, existing in-processing Fair ML methods are either incompatible with GBDT, or incur in significant performance losses while taking considerably longer to train. We present FairGBM, a dual ascent learning framework for training GBDT under fairness constraints, with little to no impact on predictive performance when compared to unconstrained GBDT. Since observational fairness metrics are non-differentiable, we propose smooth convex error rate proxies for common fairness criteria, enabling gradient-based optimization using a ``proxy-Lagrangian'' formulation. Our implementation shows an order of magnitude speedup in training time relative to related work, a pivotal aspect to foster the widespread adoption of FairGBM by real-world practitioners.
Unmasking Trees for Tabular Data
Despite much work on advanced deep learning and generative modeling techniques for tabular data generation and imputation, traditional methods have continued to win on imputation benchmarks. We herein present UnmaskingTrees, a simple method for tabular imputation (and generation) employing gradient-boosted decision trees which are used to incrementally unmask individual features. On a benchmark for out-of-the-box performance on 27 small tabular datasets, UnmaskingTrees offers leading performance on imputation; state-of-the-art performance on generation given data with missingness; and competitive performance on vanilla generation given data without missingness. To solve the conditional generation subproblem, we propose a tabular probabilistic prediction method, BaltoBot, which fits a balanced tree of boosted tree classifiers. Unlike older methods, it requires no parametric assumption on the conditional distribution, accommodating features with multimodal distributions; unlike newer diffusion methods, it offers fast sampling, closed-form density estimation, and flexible handling of discrete variables. We finally consider our two approaches as meta-algorithms, demonstrating in-context learning-based generative modeling with TabPFN.
High Performance of Gradient Boosting in Binding Affinity Prediction
Prediction of protein-ligand (PL) binding affinity remains the key to drug discovery. Popular approaches in recent years involve graph neural networks (GNNs), which are used to learn the topology and geometry of PL complexes. However, GNNs are computationally heavy and have poor scalability to graph sizes. On the other hand, traditional machine learning (ML) approaches, such as gradient-boosted decision trees (GBDTs), are lightweight yet extremely efficient for tabular data. We propose to use PL interaction features along with PL graph-level features in GBDT. We show that this combination outperforms the existing solutions.
Predicting User Experience on Laptops from Hardware Specifications
Estimating the overall user experience (UX) on a device is a common challenge faced by manufacturers. Today, device makers primarily rely on microbenchmark scores, such as Geekbench, that stress test specific hardware components, such as CPU or RAM, but do not satisfactorily capture consumer workloads. System designers often rely on domain-specific heuristics and extensive testing of prototypes to reach a desired UX goal, and yet there is often a mismatch between the manufacturers' performance claims and the consumers' experience. We present our initial results on predicting real-life experience on laptops from their hardware specifications. We target web applications that run on Chromebooks (ChromeOS laptops) for a simple and fair aggregation of experience across applications and workloads. On 54 laptops, we track 9 UX metrics on common end-user workloads: web browsing, video playback and audio/video calls. We focus on a subset of high-level metrics exposed by the Chrome browser, that are part of the Web Vitals initiative for judging the UX on web applications. With a dataset of 100K UX data points, we train gradient boosted regression trees that predict the metric values from device specifications. Across our 9 metrics, we note a mean R^2 score (goodness-of-fit on our dataset) of 97.8% and a mean MAAPE (percentage error in prediction on unseen data) of 10.1%.
Which Tricks are Important for Learning to Rank?
Nowadays, state-of-the-art learning-to-rank (LTR) methods are based on gradient-boosted decision trees (GBDT). The most well-known algorithm is LambdaMART that was proposed more than a decade ago. Recently, several other GBDT-based ranking algorithms were proposed. In this paper, we conduct a thorough analysis of these methods in a unified setup. In particular, we address the following questions. Is direct optimization of a smoothed ranking loss preferable over optimizing a convex surrogate? How to properly construct and smooth surrogate ranking losses? To address these questions, we compare LambdaMART with YetiRank and StochasticRank methods and their modifications. We also improve the YetiRank approach to allow for optimizing specific ranking loss functions. As a result, we gain insights into learning-to-rank approaches and obtain a new state-of-the-art algorithm.
TabICL: A Tabular Foundation Model for In-Context Learning on Large Data
The long-standing dominance of gradient-boosted decision trees on tabular data is currently challenged by tabular foundation models using In-Context Learning (ICL): setting the training data as context for the test data and predicting in a single forward pass without parameter updates. While the very recent TabPFNv2 foundation model (2025) excels on tables with up to 10K samples, its alternating column- and row-wise attentions make handling large training sets computationally prohibitive. So, can ICL be effectively scaled and deliver a benefit for larger tables? We introduce TabICL, a tabular foundation model for classification, pretrained on synthetic datasets with up to 60K samples and capable of handling 500K samples on affordable resources. This is enabled by a novel two-stage architecture: a column-then-row attention mechanism to build fixed-dimensional embeddings of rows, followed by a transformer for efficient ICL. Across 200 classification datasets from the TALENT benchmark, TabICL is on par with TabPFNv2 while being systematically faster (up to 10 times), and significantly outperforms all other approaches. On 56 datasets with over 10K samples, TabICL surpasses both TabPFNv2 and CatBoost, demonstrating the potential of ICL for large data.
Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard
Tabular data, a fundamental data format in machine learning, is predominantly utilized in competitions and real-world applications. The performance of tabular models--such as gradient boosted decision trees and neural networks--can vary significantly across datasets due to differences in feature distributions and task characteristics. Achieving top performance on each dataset often requires specialized expert knowledge. To address this variability, practitioners often aggregate the predictions of multiple models. However, conventional aggregation strategies typically rely on static combination rules and lack instance-level adaptability. In this work, we propose an in-context ensemble framework for tabular prediction that leverages large language models (LLMs) to perform dynamic, instance-specific integration of external model predictions. Without access to raw tabular features or semantic information, our method constructs a context around each test instance using its nearest neighbors and the predictions from a pool of external models. Within this enriched context, we introduce Chain of Tabular Thoughts (CoT^2), a prompting strategy that guides LLMs through multi-step, interpretable reasoning, making still further progress toward expert-level decision-making. Experimental results show that our method outperforms well-tuned baselines and standard ensemble techniques across a wide range of tabular datasets.
Mambular: A Sequential Model for Tabular Deep Learning
The analysis of tabular data has traditionally been dominated by gradient-boosted decision trees (GBDTs), known for their proficiency with mixed categorical and numerical features. However, recent deep learning innovations are challenging this dominance. We introduce Mambular, an adaptation of the Mamba architecture optimized for tabular data. We extensively benchmark Mambular against state-of-the-art models, including neural networks and tree-based methods, and demonstrate its competitive performance across diverse datasets. Additionally, we explore various adaptations of Mambular to understand its effectiveness for tabular data. We investigate different pooling strategies, feature interaction mechanisms, and bi-directional processing. Our analysis shows that interpreting features as a sequence and passing them through Mamba layers results in surprisingly performant models. The results highlight Mambulars potential as a versatile and powerful architecture for tabular data analysis, expanding the scope of deep learning applications in this domain. The source code is available at https://github.com/basf/mamba-tabular.
Revisiting Deep Learning Models for Tabular Data
The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports competitive results on various datasets. However, the proposed models are usually not properly compared to each other and existing works often use different benchmarks and experiment protocols. As a result, it is unclear for both researchers and practitioners what models perform best. Additionally, the field still lacks effective baselines, that is, the easy-to-use models that provide competitive performance across different problems. In this work, we perform an overview of the main families of DL architectures for tabular data and raise the bar of baselines in tabular DL by identifying two simple and powerful deep architectures. The first one is a ResNet-like architecture which turns out to be a strong baseline that is often missing in prior works. The second model is our simple adaptation of the Transformer architecture for tabular data, which outperforms other solutions on most tasks. Both models are compared to many existing architectures on a diverse set of tasks under the same training and tuning protocols. We also compare the best DL models with Gradient Boosted Decision Trees and conclude that there is still no universally superior solution.
The LHCb ultra-fast simulation option, Lamarr: design and validation
Detailed detector simulation is the major consumer of CPU resources at LHCb, having used more than 90% of the total computing budget during Run 2 of the Large Hadron Collider at CERN. As data is collected by the upgraded LHCb detector during Run 3 of the LHC, larger requests for simulated data samples are necessary, and will far exceed the pledged resources of the experiment, even with existing fast simulation options. An evolution of technologies and techniques to produce simulated samples is mandatory to meet the upcoming needs of analysis to interpret signal versus background and measure efficiencies. In this context, we propose Lamarr, a Gaudi-based framework designed to offer the fastest solution for the simulation of the LHCb detector. Lamarr consists of a pipeline of modules parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment. Most of the parameterizations are made of Deep Generative Models and Gradient Boosted Decision Trees trained on simulated samples or alternatively, where possible, on real data. Embedding Lamarr in the general LHCb Gauss Simulation framework allows combining its execution with any of the available generators in a seamless way. Lamarr has been validated by comparing key reconstructed quantities with Detailed Simulation. Good agreement of the simulated distributions is obtained with two-order-of-magnitude speed-up of the simulation phase.
Kaggle forecasting competitions: An overlooked learning opportunity
Competitions play an invaluable role in the field of forecasting, as exemplified through the recent M4 competition. The competition received attention from both academics and practitioners and sparked discussions around the representativeness of the data for business forecasting. Several competitions featuring real-life business forecasting tasks on the Kaggle platform has, however, been largely ignored by the academic community. We believe the learnings from these competitions have much to offer to the forecasting community and provide a review of the results from six Kaggle competitions. We find that most of the Kaggle datasets are characterized by higher intermittence and entropy than the M-competitions and that global ensemble models tend to outperform local single models. Furthermore, we find the strong performance of gradient boosted decision trees, increasing success of neural networks for forecasting, and a variety of techniques for adapting machine learning models to the forecasting task.
RAVEN: RAnking and Validation of ExoplaNets
We present RAVEN, a newly developed vetting and validation pipeline for TESS exoplanet candidates. The pipeline employs a Bayesian framework to derive the posterior probability of a candidate being a planet against a set of False Positive (FP) scenarios, through the use of a Gradient Boosted Decision Tree and a Gaussian Process classifier, trained on comprehensive synthetic training sets of simulated planets and 8 astrophysical FP scenarios injected into TESS lightcurves. These training sets allow large scale candidate vetting and performance verification against individual FP scenarios. A Non-Simulated FP training set consisting of real TESS candidates caused primarily by stellar variability and systematic noise is also included. The machine learning derived probabilities are combined with scenario specific prior probabilities, including the candidates' positional probabilities, to compute the final posterior probabilities. Candidates with a planetary posterior probability greater than 99% against each FP scenario and whose implied planetary radius is less than 8R_{oplus} are considered to be statistically validated by the pipeline. In this first version, the pipeline has been developed for candidates with a lightcurve released from the TESS Science Processing Operations Centre, an orbital period between 0.5 and 16 days and a transit depth greater than 300ppm. The pipeline obtained area-under-curve (AUC) scores > 97% on all FP scenarios and > 99% on all but one. Testing on an independent external sample of 1361 pre-classified TOIs, the pipeline achieved an overall accuracy of 91%, demonstrating its effectiveness for automated ranking of TESS candidates. For a probability threshold of 0.9 the pipeline reached a precision of 97% with a recall score of 66% on these TOIs. The RAVEN pipeline is publicly released as a cloud-hosted app, making it easily accessible to the community.
Making Pre-trained Language Models Great on Tabular Prediction
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing. However, due to the heterogeneity among tables, such DNN bonus is still far from being well exploited on tabular data prediction (e.g., regression or classification tasks). Condensing knowledge from diverse domains, language models (LMs) possess the capability to comprehend feature names from various tables, potentially serving as versatile learners in transferring knowledge across distinct tables and diverse prediction tasks, but their discrete text representation space is inherently incompatible with numerical feature values in tables. In this paper, we present TP-BERTa, a specifically pre-trained LM for tabular data prediction. Concretely, a novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names. Comprehensive experiments demonstrate that our pre-trained TP-BERTa leads the performance among tabular DNNs and is competitive with Gradient Boosted Decision Tree models in typical tabular data regime.
EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models
This paper describes EMBER: a labeled benchmark dataset for training machine learning models to statically detect malicious Windows portable executable files. The dataset includes features extracted from 1.1M binary files: 900K training samples (300K malicious, 300K benign, 300K unlabeled) and 200K test samples (100K malicious, 100K benign). To accompany the dataset, we also release open source code for extracting features from additional binaries so that additional sample features can be appended to the dataset. This dataset fills a void in the information security machine learning community: a benign/malicious dataset that is large, open and general enough to cover several interesting use cases. We enumerate several use cases that we considered when structuring the dataset. Additionally, we demonstrate one use case wherein we compare a baseline gradient boosted decision tree model trained using LightGBM with default settings to MalConv, a recently published end-to-end (featureless) deep learning model for malware detection. Results show that even without hyper-parameter optimization, the baseline EMBER model outperforms MalConv. The authors hope that the dataset, code and baseline model provided by EMBER will help invigorate machine learning research for malware detection, in much the same way that benchmark datasets have advanced computer vision research.
SOREL-20M: A Large Scale Benchmark Dataset for Malicious PE Detection
In this paper we describe the SOREL-20M (Sophos/ReversingLabs-20 Million) dataset: a large-scale dataset consisting of nearly 20 million files with pre-extracted features and metadata, high-quality labels derived from multiple sources, information about vendor detections of the malware samples at the time of collection, and additional ``tags'' related to each malware sample to serve as additional targets. In addition to features and metadata, we also provide approximately 10 million ``disarmed'' malware samples -- samples with both the optional\_headers.subsystem and file\_header.machine flags set to zero -- that may be used for further exploration of features and detection strategies. We also provide Python code to interact with the data and features, as well as baseline neural network and gradient boosted decision tree models and their results, with full training and evaluation code, to serve as a starting point for further experimentation.
iLTM: Integrated Large Tabular Model
Tabular data underpins decisions across science, industry, and public services. Despite rapid progress, advances in deep learning have not fully carried over to the tabular domain, where gradient-boosted decision trees (GBDTs) remain a default choice in practice. We present iLTM, an integrated Large Tabular Model that unifies tree-derived embeddings, dimensionality-agnostic representations, a meta-trained hypernetwork, multilayer perceptrons (MLPs), and retrieval within a single architecture. Pretrained on more than 1,800 heterogeneous classification datasets, iLTM achieves consistently superior performance across tabular classification and regression tasks, from small datasets to large and high-dimensional tasks. After light fine-tuning, the meta-trained hypernetwork transfers to regression targets, matching or surpassing strong baselines. Extensive experiments show that iLTM outperforms well-tuned GBDTs and leading deep tabular models while requiring less task-specific tuning. By bridging the gap between tree-based and neural methods, iLTM offers a new framework for tabular foundation models for robust, adaptable, and scalable tabular learning.
TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning
Deep learning (DL) models for tabular data problems are receiving increasingly more attention, while the algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution. Following the recent trends in other domains, such as natural language processing and computer vision, several retrieval-augmented tabular DL models have been recently proposed. For a given target object, a retrieval-based model retrieves other relevant objects, such as the nearest neighbors, from the available (training) data and uses their features or even labels to make a better prediction. However, we show that the existing retrieval-based tabular DL solutions provide only minor, if any, benefits over the properly tuned simple retrieval-free baselines. Thus, it remains unclear whether the retrieval-based approach is a worthy direction for tabular DL. In this work, we give a strong positive answer to this question. We start by incrementally augmenting a simple feed-forward architecture with an attention-like retrieval component similar to those of many (tabular) retrieval-based models. Then, we highlight several details of the attention mechanism that turn out to have a massive impact on the performance on tabular data problems, but that were not explored in prior work. As a result, we design TabR -- a simple retrieval-based tabular DL model which, on a set of public benchmarks, demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed ``GBDT-friendly'' benchmark (see the first figure).
T-JEPA: Augmentation-Free Self-Supervised Learning for Tabular Data
Self-supervision is often used for pre-training to foster performance on a downstream task by constructing meaningful representations of samples. Self-supervised learning (SSL) generally involves generating different views of the same sample and thus requires data augmentations that are challenging to construct for tabular data. This constitutes one of the main challenges of self-supervision for structured data. In the present work, we propose a novel augmentation-free SSL method for tabular data. Our approach, T-JEPA, relies on a Joint Embedding Predictive Architecture (JEPA) and is akin to mask reconstruction in the latent space. It involves predicting the latent representation of one subset of features from the latent representation of a different subset within the same sample, thereby learning rich representations without augmentations. We use our method as a pre-training technique and train several deep classifiers on the obtained representation. Our experimental results demonstrate a substantial improvement in both classification and regression tasks, outperforming models trained directly on samples in their original data space. Moreover, T-JEPA enables some methods to consistently outperform or match the performance of traditional methods likes Gradient Boosted Decision Trees. To understand why, we extensively characterize the obtained representations and show that T-JEPA effectively identifies relevant features for downstream tasks without access to the labels. Additionally, we introduce regularization tokens, a novel regularization method critical for training of JEPA-based models on structured data.
Predicting the duration of traffic incidents for Sydney greater metropolitan area using machine learning methods
This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84% short-term duration classification accuracy and 62.72% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: https://github.com/Future-Mobility-Lab/SydneyIncidents
A Classical Approach to Handcrafted Feature Extraction Techniques for Bangla Handwritten Digit Recognition
Bangla Handwritten Digit recognition is a significant step forward in the development of Bangla OCR. However, intricate shape, structural likeness and distinctive composition style of Bangla digits makes it relatively challenging to distinguish. Thus, in this paper, we benchmarked four rigorous classifiers to recognize Bangla Handwritten Digit: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Gradient-Boosted Decision Trees (GBDT) based on three handcrafted feature extraction techniques: Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP), and Gabor filter on four publicly available Bangla handwriting digits datasets: NumtaDB, CMARTdb, Ekush and BDRW. Here, handcrafted feature extraction methods are used to extract features from the dataset image, which are then utilized to train machine learning classifiers to identify Bangla handwritten digits. We further fine-tuned the hyperparameters of the classification algorithms in order to acquire the finest Bangla handwritten digits recognition performance from these algorithms, and among all the models we employed, the HOG features combined with SVM model (HOG+SVM) attained the best performance metrics across all datasets. The recognition accuracy of the HOG+SVM method on the NumtaDB, CMARTdb, Ekush and BDRW datasets reached 93.32%, 98.08%, 95.68% and 89.68%, respectively as well as we compared the model performance with recent state-of-art methods.
Gradient Boosting Reinforcement Learning
Neural networks (NN) achieve remarkable results in various tasks, but lack key characteristics: interpretability, support for categorical features, and lightweight implementations suitable for edge devices. While ongoing efforts aim to address these challenges, Gradient Boosting Trees (GBT) inherently meet these requirements. As a result, GBTs have become the go-to method for supervised learning tasks in many real-world applications and competitions. However, their application in online learning scenarios, notably in reinforcement learning (RL), has been limited. In this work, we bridge this gap by introducing Gradient-Boosting RL (GBRL), a framework that extends the advantages of GBT to the RL domain. Using the GBRL framework, we implement various actor-critic algorithms and compare their performance with their NN counterparts. Inspired by shared backbones in NN we introduce a tree-sharing approach for policy and value functions with distinct learning rates, enhancing learning efficiency over millions of interactions. GBRL achieves competitive performance across a diverse array of tasks, excelling in domains with structured or categorical features. Additionally, we present a high-performance, GPU-accelerated implementation that integrates seamlessly with widely-used RL libraries (available at https://github.com/NVlabs/gbrl). GBRL expands the toolkit for RL practitioners, demonstrating the viability and promise of GBT within the RL paradigm, particularly in domains characterized by structured or categorical features.
XGBoost: A Scalable Tree Boosting System
Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.
Gradient Boosting Neural Networks: GrowNet
A novel gradient boosting framework is proposed where shallow neural networks are employed as ``weak learners''. General loss functions are considered under this unified framework with specific examples presented for classification, regression, and learning to rank. A fully corrective step is incorporated to remedy the pitfall of greedy function approximation of classic gradient boosting decision tree. The proposed model rendered outperforming results against state-of-the-art boosting methods in all three tasks on multiple datasets. An ablation study is performed to shed light on the effect of each model components and model hyperparameters.
Sequential Training of Neural Networks with Gradient Boosting
This paper presents a novel technique based on gradient boosting to train the final layers of a neural network (NN). Gradient boosting is an additive expansion algorithm in which a series of models are trained sequentially to approximate a given function. A neural network can also be seen as an additive expansion where the scalar product of the responses of the last hidden layer and its weights provide the final output of the network. Instead of training the network as a whole, the proposed algorithm trains the network sequentially in T steps. First, the bias term of the network is initialized with a constant approximation that minimizes the average loss of the data. Then, at each step, a portion of the network, composed of J neurons, is trained to approximate the pseudo-residuals on the training data computed from the previous iterations. Finally, the T partial models and bias are integrated as a single NN with T times J neurons in the hidden layer. Extensive experiments in classification and regression tasks, as well as in combination with deep neural networks, are carried out showing a competitive generalization performance with respect to neural networks trained with different standard solvers, such as Adam, L-BFGS, SGD and deep models. Furthermore, we show that the proposed method design permits to switch off a number of hidden units during test (the units that were last trained) without a significant reduction of its generalization ability. This permits the adaptation of the model to different classification speed requirements on the fly.
Does your graph need a confidence boost? Convergent boosted smoothing on graphs with tabular node features
For supervised learning with tabular data, decision tree ensembles produced via boosting techniques generally dominate real-world applications involving iid training/test sets. However for graph data where the iid assumption is violated due to structured relations between samples, it remains unclear how to best incorporate this structure within existing boosting pipelines. To this end, we propose a generalized framework for iterating boosting with graph propagation steps that share node/sample information across edges connecting related samples. Unlike previous efforts to integrate graph-based models with boosting, our approach is anchored in a principled meta loss function such that provable convergence can be guaranteed under relatively mild assumptions. Across a variety of non-iid graph datasets with tabular node features, our method achieves comparable or superior performance than both tabular and graph neural network models, as well as existing hybrid strategies that combine the two. Beyond producing better predictive performance than recently proposed graph models, our proposed techniques are easy to implement, computationally more efficient, and enjoy stronger theoretical guarantees (which make our results more reproducible).
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
We present Natural Gradient Boosting (NGBoost), an algorithm for generic probabilistic prediction via gradient boosting. Typical regression models return a point estimate, conditional on covariates, but probabilistic regression models output a full probability distribution over the outcome space, conditional on the covariates. This allows for predictive uncertainty estimation -- crucial in applications like healthcare and weather forecasting. NGBoost generalizes gradient boosting to probabilistic regression by treating the parameters of the conditional distribution as targets for a multiparameter boosting algorithm. Furthermore, we show how the Natural Gradient is required to correct the training dynamics of our multiparameter boosting approach. NGBoost can be used with any base learner, any family of distributions with continuous parameters, and any scoring rule. NGBoost matches or exceeds the performance of existing methods for probabilistic prediction while offering additional benefits in flexibility, scalability, and usability. An open-source implementation is available at github.com/stanfordmlgroup/ngboost.
Condensed Gradient Boosting
This paper presents a computationally efficient variant of gradient boosting for multi-class classification and multi-output regression tasks. Standard gradient boosting uses a 1-vs-all strategy for classifications tasks with more than two classes. This strategy translates in that one tree per class and iteration has to be trained. In this work, we propose the use of multi-output regressors as base models to handle the multi-class problem as a single task. In addition, the proposed modification allows the model to learn multi-output regression problems. An extensive comparison with other multi-ouptut based gradient boosting methods is carried out in terms of generalization and computational efficiency. The proposed method showed the best trade-off between generalization ability and training and predictions speeds.
Fair Densities via Boosting the Sufficient Statistics of Exponential Families
We introduce a boosting algorithm to pre-process data for fairness. Starting from an initial fair but inaccurate distribution, our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee. To do so, it learns the sufficient statistics of an exponential family with boosting-compliant convergence. Importantly, we are able to theoretically prove that the learned distribution will have a representation rate and statistical rate data fairness guarantee. Unlike recent optimization based pre-processing methods, our approach can be easily adapted for continuous domain features. Furthermore, when the weak learners are specified to be decision trees, the sufficient statistics of the learned distribution can be examined to provide clues on sources of (un)fairness. Empirical results are present to display the quality of result on real-world data.
Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
The goal of the change-point detection is to discover changes of time series distribution. One of the state of the art approaches of the change-point detection are based on direct density ratio estimation. In this work we show how existing algorithms can be generalized using various binary classification and regression models. In particular, we show that the Gradient Boosting over Decision Trees and Neural Networks can be used for this purpose. The algorithms are tested on several synthetic and real-world datasets. The results show that the proposed methods outperform classical RuLSIF algorithm. Discussion of cases where the proposed algorithms have advantages over existing methods are also provided.
GRANDE: Gradient-Based Decision Tree Ensembles for Tabular Data
Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose GRANDE, GRAdieNt-Based Decision Tree Ensembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets. The method is available under: https://github.com/s-marton/GRANDE
Language models are weak learners
A central notion in practical and theoretical machine learning is that of a weak learner, classifiers that achieve better-than-random performance (on any given distribution over data), even by a small margin. Such weak learners form the practical basis for canonical machine learning methods such as boosting. In this work, we illustrate that prompt-based large language models can operate effectively as said weak learners. Specifically, we illustrate the use of a large language model (LLM) as a weak learner in a boosting algorithm applied to tabular data. We show that by providing (properly sampled according to the distribution of interest) text descriptions of tabular data samples, LLMs can produce a summary of the samples that serves as a template for classification and achieves the aim of acting as a weak learner on this task. We incorporate these models into a boosting approach, which in some settings can leverage the knowledge within the LLM to outperform traditional tree-based boosting. The model outperforms both few-shot learning and occasionally even more involved fine-tuning procedures, particularly for tasks involving small numbers of data points. The results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
ExcelFormer: Can a DNN be a Sure Bet for Tabular Prediction?
Data organized in tabular format is ubiquitous in real-world applications, and users often craft tables with biased feature definitions and flexibly set prediction targets of their interests. Thus, a rapid development of a robust, effective, dataset-versatile, user-friendly tabular prediction approach is highly desired. While Gradient Boosting Decision Trees (GBDTs) and existing deep neural networks (DNNs) have been extensively utilized by professional users, they present several challenges for casual users, particularly: (i) the dilemma of model selection due to their different dataset preferences, and (ii) the need for heavy hyperparameter searching, failing which their performances are deemed inadequate. In this paper, we delve into this question: Can we develop a deep learning model that serves as a "sure bet" solution for a wide range of tabular prediction tasks, while also being user-friendly for casual users? We delve into three key drawbacks of deep tabular models, encompassing: (P1) lack of rotational variance property, (P2) large data demand, and (P3) over-smooth solution. We propose ExcelFormer, addressing these challenges through a semi-permeable attention module that effectively constrains the influence of less informative features to break the DNNs' rotational invariance property (for P1), data augmentation approaches tailored for tabular data (for P2), and attentive feedforward network to boost the model fitting capability (for P3). These designs collectively make ExcelFormer a "sure bet" solution for diverse tabular datasets. Extensive and stratified experiments conducted on real-world datasets demonstrate that our model outperforms previous approaches across diverse tabular data prediction tasks, and this framework can be friendly to casual users, offering ease of use without the heavy hyperparameter tuning.
Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching
Image-text matching remains a challenging task due to heterogeneous semantic diversity across modalities and insufficient distance separability within triplets. Different from previous approaches focusing on enhancing multi-modal representations or exploiting cross-modal correspondence for more accurate retrieval, in this paper we aim to leverage the knowledge transfer between peer branches in a boosting manner to seek a more powerful matching model. Specifically, we propose a brand-new Deep Boosting Learning (DBL) algorithm, where an anchor branch is first trained to provide insights into the data properties, with a target branch gaining more advanced knowledge to develop optimal features and distance metrics. Concretely, an anchor branch initially learns the absolute or relative distance between positive and negative pairs, providing a foundational understanding of the particular network and data distribution. Building upon this knowledge, a target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples. Extensive experiments validate that our DBL can achieve impressive and consistent improvements based on various recent state-of-the-art models in the image-text matching field, and outperform related popular cooperative strategies, e.g., Conventional Distillation, Mutual Learning, and Contrastive Learning. Beyond the above, we confirm that DBL can be seamlessly integrated into their training scenarios and achieve superior performance under the same computational costs, demonstrating the flexibility and broad applicability of our proposed method. Our code is publicly available at: https://github.com/Paranioar/DBL.
Learning a Decision Tree Algorithm with Transformers
Decision trees are renowned for their interpretability capability to achieve high predictive performance, especially on tabular data. Traditionally, they are constructed through recursive algorithms, where they partition the data at every node in a tree. However, identifying the best partition is challenging, as decision trees optimized for local segments may not bring global generalization. To address this, we introduce MetaTree, which trains a transformer-based model on filtered outputs from classical algorithms to produce strong decision trees for classification. Specifically, we fit both greedy decision trees and optimized decision trees on a large number of datasets. We then train MetaTree to produce the trees that achieve strong generalization performance. This training enables MetaTree to not only emulate these algorithms, but also to intelligently adapt its strategy according to the context, thereby achieving superior generalization performance.
Accuracy Prediction with Non-neural Model for Neural Architecture Search
Neural architecture search (NAS) with an accuracy predictor that predicts the accuracy of candidate architectures has drawn increasing attention due to its simplicity and effectiveness. Previous works usually employ neural network-based predictors which require more delicate design and are easy to overfit. Considering that most architectures are represented as sequences of discrete symbols which are more like tabular data and preferred by non-neural predictors, in this paper, we study an alternative approach which uses non-neural model for accuracy prediction. Specifically, as decision tree based models can better handle tabular data, we leverage gradient boosting decision tree (GBDT) as the predictor for NAS. We demonstrate that the GBDT predictor can achieve comparable (if not better) prediction accuracy than neural network based predictors. Moreover, considering that a compact search space can ease the search process, we propose to prune the search space gradually according to important features derived from GBDT. In this way, NAS can be performed by first pruning the search space and then searching a neural architecture, which is more efficient and effective. Experiments on NASBench-101 and ImageNet demonstrate the effectiveness of using GBDT as predictor for NAS: (1) On NASBench-101, it is 22x, 8x, and 6x more sample efficient than random search, regularized evolution, and Monte Carlo Tree Search (MCTS) in finding the global optimum; (2) It achieves 24.2% top-1 error rate on ImageNet, and further achieves 23.4% top-1 error rate on ImageNet when enhanced with search space pruning. Code is provided at https://github.com/renqianluo/GBDT-NAS.
A Gradient Boosting Approach for Training Convolutional and Deep Neural Networks
Deep learning has revolutionized the computer vision and image classification domains. In this context Convolutional Neural Networks (CNNs) based architectures are the most widely applied models. In this article, we introduced two procedures for training Convolutional Neural Networks (CNNs) and Deep Neural Network based on Gradient Boosting (GB), namely GB-CNN and GB-DNN. These models are trained to fit the gradient of the loss function or pseudo-residuals of previous models. At each iteration, the proposed method adds one dense layer to an exact copy of the previous deep NN model. The weights of the dense layers trained on previous iterations are frozen to prevent over-fitting, permitting the model to fit the new dense as well as to fine-tune the convolutional layers (for GB-CNN) while still utilizing the information already learned. Through extensive experimentation on different 2D-image classification and tabular datasets, the presented models show superior performance in terms of classification accuracy with respect to standard CNN and Deep-NN with the same architectures.
The Success of AdaBoost and Its Application in Portfolio Management
We develop a novel approach to explain why AdaBoost is a successful classifier. By introducing a measure of the influence of the noise points (ION) in the training data for the binary classification problem, we prove that there is a strong connection between the ION and the test error. We further identify that the ION of AdaBoost decreases as the iteration number or the complexity of the base learners increases. We confirm that it is impossible to obtain a consistent classifier without deep trees as the base learners of AdaBoost in some complicated situations. We apply AdaBoost in portfolio management via empirical studies in the Chinese market, which corroborates our theoretical propositions.
Cross-Domain Web Information Extraction at Pinterest
The internet offers a massive repository of unstructured information, but it's a significant challenge to convert this into a structured format. At Pinterest, the ability to accurately extract structured product data from e-commerce websites is essential to enhance user experiences and improve content distribution. In this paper, we present Pinterest's system for attribute extraction, which achieves remarkable accuracy and scalability at a manageable cost. Our approach leverages a novel webpage representation that combines structural, visual, and text modalities into a compact form, optimizing it for small model learning. This representation captures each visible HTML node with its text, style and layout information. We show how this allows simple models such as eXtreme Gradient Boosting (XGBoost) to extract attributes more accurately than much more complex Large Language Models (LLMs) such as Generative Pre-trained Transformer (GPT). Our results demonstrate a system that is highly scalable, processing over 1,000 URLs per second, while being 1000 times more cost-effective than the cheapest GPT alternatives.
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
The ability to learn new concepts continually is necessary in this ever-changing world. However, deep neural networks suffer from catastrophic forgetting when learning new categories. Many works have been proposed to alleviate this phenomenon, whereas most of them either fall into the stability-plasticity dilemma or take too much computation or storage overhead. Inspired by the gradient boosting algorithm to gradually fit the residuals between the target model and the previous ensemble model, we propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively. Specifically, we first dynamically expand new modules to fit the residuals between the target and the output of the original model. Next, we remove redundant parameters and feature dimensions through an effective distillation strategy to maintain the single backbone model. We validate our method FOSTER on CIFAR-100 and ImageNet-100/1000 under different settings. Experimental results show that our method achieves state-of-the-art performance. Code is available at: https://github.com/G-U-N/ECCV22-FOSTER.
LiteSearch: Efficacious Tree Search for LLM
Recent research suggests that tree search algorithms (e.g. Monte Carlo Tree Search) can dramatically boost LLM performance on complex mathematical reasoning tasks. However, they often require more than 10 times the computational resources of greedy decoding due to wasteful search strategies, making them difficult to be deployed in practical applications. This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget (maximum number of children) calculation to tackle this issue. By considering the search progress towards the final answer (history) and the guidance from a value network (future) trained without any step-wise annotations, our algorithm iteratively selects the most promising tree node before expanding it within the boundaries of the allocated computational budget. Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach not only offers competitive performance but also enjoys significantly lower computational costs compared to baseline methods.
AdaBoost is not an Optimal Weak to Strong Learner
AdaBoost is a classic boosting algorithm for combining multiple inaccurate classifiers produced by a weak learner, to produce a strong learner with arbitrarily high accuracy when given enough training data. Determining the optimal number of samples necessary to obtain a given accuracy of the strong learner, is a basic learning theoretic question. Larsen and Ritzert (NeurIPS'22) recently presented the first provably optimal weak-to-strong learner. However, their algorithm is somewhat complicated and it remains an intriguing question whether the prototypical boosting algorithm AdaBoost also makes optimal use of training samples. In this work, we answer this question in the negative. Concretely, we show that the sample complexity of AdaBoost, and other classic variations thereof, are sub-optimal by at least one logarithmic factor in the desired accuracy of the strong learner.
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers
Despite their remarkable effectiveness and broad application, the drivers of success underlying ensembles of trees are still not fully understood. In this paper, we highlight how interpreting tree ensembles as adaptive and self-regularizing smoothers can provide new intuition and deeper insight to this topic. We use this perspective to show that, when studied as smoothers, randomized tree ensembles not only make predictions that are quantifiably more smooth than the predictions of the individual trees they consist of, but also further regulate their smoothness at test-time based on the dissimilarity between testing and training inputs. First, we use this insight to revisit, refine and reconcile two recent explanations of forest success by providing a new way of quantifying the conjectured behaviors of tree ensembles objectively by measuring the effective degree of smoothing they imply. Then, we move beyond existing explanations for the mechanisms by which tree ensembles improve upon individual trees and challenge the popular wisdom that the superior performance of forests should be understood as a consequence of variance reduction alone. We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles -- because the prevailing definition of bias does not capture differences in the expressivity of the hypothesis classes formed by trees and forests. Instead, we show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled. In particular, we demonstrate that the smoothing effect of ensembling can reduce variance in predictions due to noise in outcome generation, reduce variability in the quality of the learned function given fixed input data and reduce potential bias in learnable functions by enriching the available hypothesis space.
Tree Prompting: Efficient Task Adaptation without Fine-Tuning
Prompting language models (LMs) is the main interface for applying them to new tasks. However, for smaller LMs, prompting provides low accuracy compared to gradient-based finetuning. Tree Prompting is an approach to prompting which builds a decision tree of prompts, linking multiple LM calls together to solve a task. At inference time, each call to the LM is determined by efficiently routing the outcome of the previous call using the tree. Experiments on classification datasets show that Tree Prompting improves accuracy over competing methods and is competitive with fine-tuning. We also show that variants of Tree Prompting allow inspection of a model's decision-making process.
Decision Tree Induction Through LLMs via Semantically-Aware Evolution
Decision trees are a crucial class of models offering robust predictive performance and inherent interpretability across various domains, including healthcare, finance, and logistics. However, current tree induction methods often face limitations such as suboptimal solutions from greedy methods or prohibitive computational costs and limited applicability of exact optimization approaches. To address these challenges, we propose an evolutionary optimization method for decision tree induction based on genetic programming (GP). Our key innovation is the integration of semantic priors and domain-specific knowledge about the search space into the optimization algorithm. To this end, we introduce LLEGO, a framework that incorporates semantic priors into genetic search operators through the use of Large Language Models (LLMs), thereby enhancing search efficiency and targeting regions of the search space that yield decision trees with superior generalization performance. This is operationalized through novel genetic operators that work with structured natural language prompts, effectively utilizing LLMs as conditional generative models and sources of semantic knowledge. Specifically, we introduce fitness-guided crossover to exploit high-performing regions, and diversity-guided mutation for efficient global exploration of the search space. These operators are controlled by corresponding hyperparameters that enable a more nuanced balance between exploration and exploitation across the search space. Empirically, we demonstrate across various benchmarks that LLEGO evolves superior-performing trees compared to existing tree induction methods, and exhibits significantly more efficient search performance compared to conventional GP approaches.
Beam Tree Recursive Cells
We propose Beam Tree Recursive Cell (BT-Cell) - a backpropagation-friendly framework to extend Recursive Neural Networks (RvNNs) with beam search for latent structure induction. We further extend this framework by proposing a relaxation of the hard top-k operators in beam search for better propagation of gradient signals. We evaluate our proposed models in different out-of-distribution splits in both synthetic and realistic data. Our experiments show that BTCell achieves near-perfect performance on several challenging structure-sensitive synthetic tasks like ListOps and logical inference while maintaining comparable performance in realistic data against other RvNN-based models. Additionally, we identify a previously unknown failure case for neural models in generalization to unseen number of arguments in ListOps. The code is available at: https://github.com/JRC1995/BeamTreeRecursiveCells.
PromptBoosting: Black-Box Text Classification with Ten Forward Passes
We describe PromptBoosting, a query-efficient procedure for building a text classifier from a neural language model (LM) without access to the LM's parameters, gradients, or hidden representations. This form of "black-box" classifier training has become increasingly important as the cost of training and inference in large-scale LMs grows. But existing black-box LM classifier learning approaches are themselves computationally inefficient, typically specializing LMs to the target task by searching in a large space of (discrete or continuous) prompts using zeroth-order optimization methods. Instead of directly optimizing in prompt space, PromptBoosting obtains a small pool of prompts via a gradient-free approach and then constructs a large pool of weak learners by pairing these prompts with different elements of the LM's output distribution. These weak learners are then ensembled using the AdaBoost algorithm. The entire learning process requires only a small number of forward passes and no backward pass. Experiments show that PromptBoosting achieves state-of-the-art performance in multiple black-box few-shot classification tasks, and matches or outperforms full fine-tuning in both few-shot and standard learning paradigms, while training 10x faster than existing black-box methods.
From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
Robust-Multi-Task Gradient Boosting
Multi-task learning (MTL) has shown effectiveness in exploiting shared information across tasks to improve generalization. MTL assumes tasks share similarities that can improve performance. In addition, boosting algorithms have demonstrated exceptional performance across diverse learning problems, primarily due to their ability to focus on hard-to-learn instances and iteratively reduce residual errors. This makes them a promising approach for learning multi-task problems. However, real-world MTL scenarios often involve tasks that are not well-aligned (known as outlier or adversarial tasks), which do not share beneficial similarities with others and can, in fact, deteriorate the performance of the overall model. To overcome this challenge, we propose Robust-Multi-Task Gradient Boosting (R-MTGB), a novel boosting framework that explicitly models and adapts to task heterogeneity during training. R-MTGB structures the learning process into three sequential blocks: (1) learning shared patterns, (2) partitioning tasks into outliers and non-outliers with regularized parameters, and (3) fine-tuning task-specific predictors. This architecture enables R-MTGB to automatically detect and penalize outlier tasks while promoting effective knowledge transfer among related tasks. Our method integrates these mechanisms seamlessly within gradient boosting, allowing robust handling of noisy or adversarial tasks without sacrificing accuracy. Extensive experiments on both synthetic benchmarks and real-world datasets demonstrate that our approach successfully isolates outliers, transfers knowledge, and consistently reduces prediction errors for each task individually, and achieves overall performance gains across all tasks. These results highlight robustness, adaptability, and reliable convergence of R-MTGB in challenging MTL environments.
Cluster Workload Allocation: A Predictive Approach Leveraging Machine Learning Efficiency
This research investigates how Machine Learning (ML) algorithms can assist in workload allocation strategies by detecting tasks with node affinity operators (referred to as constraint operators), which constrain their execution to a limited number of nodes. Using real-world Google Cluster Data (GCD) workload traces and the AGOCS framework, the study extracts node attributes and task constraints, then analyses them to identify suitable node-task pairings. It focuses on tasks that can be executed on either a single node or fewer than a thousand out of 12.5k nodes in the analysed GCD cluster. Task constraint operators are compacted, pre-processed with one-hot encoding, and used as features in a training dataset. Various ML classifiers, including Artificial Neural Networks, K-Nearest Neighbours, Decision Trees, Naive Bayes, Ridge Regression, Adaptive Boosting, and Bagging, are fine-tuned and assessed for accuracy and F1-scores. The final ensemble voting classifier model achieved 98% accuracy and a 1.5-1.8% misclassification rate for tasks with a single suitable node.
SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
Tabular data underpins numerous high-impact applications of machine learning from fraud detection to genomics and healthcare. Classical approaches to solving tabular problems, such as gradient boosting and random forests, are widely used by practitioners. However, recent deep learning methods have achieved a degree of performance competitive with popular techniques. We devise a hybrid deep learning approach to solving tabular data problems. Our method, SAINT, performs attention over both rows and columns, and it includes an enhanced embedding method. We also study a new contrastive self-supervised pre-training method for use when labels are scarce. SAINT consistently improves performance over previous deep learning methods, and it even outperforms gradient boosting methods, including XGBoost, CatBoost, and LightGBM, on average over a variety of benchmark tasks.
Real-time Traffic Classification for 5G NSA Encrypted Data Flows With Physical Channel Records
The classification of fifth-generation New-Radio (5G-NR) mobile network traffic is an emerging topic in the field of telecommunications. It can be utilized for quality of service (QoS) management and dynamic resource allocation. However, traditional approaches such as Deep Packet Inspection (DPI) can not be directly applied to encrypted data flows. Therefore, new real-time encrypted traffic classification algorithms need to be investigated to handle dynamic transmission. In this study, we examine the real-time encrypted 5G Non-Standalone (NSA) application-level traffic classification using physical channel records. Due to the vastness of their features, decision-tree-based gradient boosting algorithms are a viable approach for classification. We generate a noise-limited 5G NSA trace dataset with traffic from multiple applications. We develop a new pipeline to convert sequences of physical channel records into numerical vectors. A set of machine learning models are tested, and we propose our solution based on Light Gradient Boosting Machine (LGBM) due to its advantages in fast parallel training and low computational burden in practical scenarios. Our experiments demonstrate that our algorithm can achieve 95% accuracy on the classification task with a state-of-the-art response time as quick as 10ms.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
An Integrated Optimization and Machine Learning Models to Predict the Admission Status of Emergency Patients
This work proposes a framework for optimizing machine learning algorithms. The practicality of the framework is illustrated using an important case study from the healthcare domain, which is predicting the admission status of emergency department (ED) patients (e.g., admitted vs. discharged) using patient data at the time of triage. The proposed framework can mitigate the crowding problem by proactively planning the patient boarding process. A large retrospective dataset of patient records is obtained from the electronic health record database of all ED visits over three years from three major locations of a healthcare provider in the Midwest of the US. Three machine learning algorithms are proposed: T-XGB, T-ADAB, and T-MLP. T-XGB integrates extreme gradient boosting (XGB) and Tabu Search (TS), T-ADAB integrates Adaboost and TS, and T-MLP integrates multi-layer perceptron (MLP) and TS. The proposed algorithms are compared with the traditional algorithms: XGB, ADAB, and MLP, in which their parameters are tunned using grid search. The three proposed algorithms and the original ones are trained and tested using nine data groups that are obtained from different feature selection methods. In other words, 54 models are developed. Performance was evaluated using five measures: Area under the curve (AUC), sensitivity, specificity, F1, and accuracy. The results show that the newly proposed algorithms resulted in high AUC and outperformed the traditional algorithms. The T-ADAB performs the best among the newly developed algorithms. The AUC, sensitivity, specificity, F1, and accuracy of the best model are 95.4%, 99.3%, 91.4%, 95.2%, 97.2%, respectively.
On Computing Optimal Tree Ensembles
Random forests and, more generally, (decision\nobreakdash-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtaining a (6delta D S)^S cdot poly-time algorithm, where S is the number of cuts in the tree ensemble, D the largest domain size, and delta is the largest number of features in which two examples differ. To achieve this, we introduce the witness-tree technique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an ell^n cdot poly-time algorithm, where ell is the number of trees and n the number of examples. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.
Machine Learning approach for Credit Scoring
In this work we build a stack of machine learning models aimed at composing a state-of-the-art credit rating and default prediction system, obtaining excellent out-of-sample performances. Our approach is an excursion through the most recent ML / AI concepts, starting from natural language processes (NLP) applied to economic sectors' (textual) descriptions using embedding and autoencoders (AE), going through the classification of defaultable firms on the base of a wide range of economic features using gradient boosting machines (GBM) and calibrating their probabilities paying due attention to the treatment of unbalanced samples. Finally we assign credit ratings through genetic algorithms (differential evolution, DE). Model interpretability is achieved by implementing recent techniques such as SHAP and LIME, which explain predictions locally in features' space.
Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes
Given the generational gap in available hardware between lay practitioners and the most endowed institutions, LLMs are becoming increasingly inaccessible as they grow in size. Whilst many approaches have been proposed to compress LLMs to make their resource consumption manageable, these methods themselves tend to be resource intensive, putting them out of the reach of the very user groups they target. In this work, we explore the problem of structured pruning of LLMs using only forward passes. We seek to empower practitioners to prune models so large that their available hardware has just enough memory to run inference. We develop Bonsai, a gradient-free, perturbative pruning method capable of delivering small, fast, and accurate pruned models. We observe that Bonsai outputs pruned models that (i) outperform those generated by more expensive gradient-based structured pruning methods, and (ii) are twice as fast (with comparable accuracy) as those generated by semi-structured pruning methods requiring comparable resources as Bonsai. We also leverage Bonsai to produce a new sub-2B model using a single A6000 that yields state-of-the-art performance on 4/6 tasks on the Huggingface Open LLM leaderboard.
A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects.
Towards Provably Unlearnable Examples via Bayes Error Optimisation
The recent success of machine learning models, especially large-scale classifiers and language models, relies heavily on training with massive data. These data are often collected from online sources. This raises serious concerns about the protection of user data, as individuals may not have given consent for their data to be used in training. To address this concern, recent studies introduce the concept of unlearnable examples, i.e., data instances that appear natural but are intentionally altered to prevent models from effectively learning from them. While existing methods demonstrate empirical effectiveness, they typically rely on heuristic trials and lack formal guarantees. Besides, when unlearnable examples are mixed with clean data, as is often the case in practice, their unlearnability disappears. In this work, we propose a novel approach to constructing unlearnable examples by systematically maximising the Bayes error, a measurement of irreducible classification error. We develop an optimisation-based approach and provide an efficient solution using projected gradient ascent. Our method provably increases the Bayes error and remains effective when the unlearning examples are mixed with clean samples. Experimental results across multiple datasets and model architectures are consistent with our theoretical analysis and show that our approach can restrict data learnability, effectively in practice.
Neural Networks are Decision Trees
In this manuscript, we show that any neural network with any activation function can be represented as a decision tree. The representation is equivalence and not an approximation, thus keeping the accuracy of the neural network exactly as is. We believe that this work provides better understanding of neural networks and paves the way to tackle their black-box nature. We share equivalent trees of some neural networks and show that besides providing interpretability, tree representation can also achieve some computational advantages for small networks. The analysis holds both for fully connected and convolutional networks, which may or may not also include skip connections and/or normalizations.
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Prototype-based methods use interpretable representations to address the black-box nature of deep learning models, in contrast to post-hoc explanation methods that only approximate such models. We propose the Neural Prototype Tree (ProtoTree), an intrinsically interpretable deep learning method for fine-grained image recognition. ProtoTree combines prototype learning with decision trees, and thus results in a globally interpretable model by design. Additionally, ProtoTree can locally explain a single prediction by outlining a decision path through the tree. Each node in our binary tree contains a trainable prototypical part. The presence or absence of this learned prototype in an image determines the routing through a node. Decision making is therefore similar to human reasoning: Does the bird have a red throat? And an elongated beak? Then it's a hummingbird! We tune the accuracy-interpretability trade-off using ensemble methods, pruning and binarizing. We apply pruning without sacrificing accuracy, resulting in a small tree with only 8 learned prototypes along a path to classify a bird from 200 species. An ensemble of 5 ProtoTrees achieves competitive accuracy on the CUB-200- 2011 and Stanford Cars data sets. Code is available at https://github.com/M-Nauta/ProtoTree
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
Random Feature Representation Boosting
We introduce Random Feature Representation Boosting (RFRBoost), a novel method for constructing deep residual random feature neural networks (RFNNs) using boosting theory. RFRBoost uses random features at each layer to learn the functional gradient of the network representation, enhancing performance while preserving the convex optimization benefits of RFNNs. In the case of MSE loss, we obtain closed-form solutions to greedy layer-wise boosting with random features. For general loss functions, we show that fitting random feature residual blocks reduces to solving a quadratically constrained least squares problem. We demonstrate, through numerical experiments on 91 tabular datasets for regression and classification, that RFRBoost significantly outperforms traditional RFNNs and end-to-end trained MLP ResNets, while offering substantial computational advantages and theoretical guarantees stemming from boosting theory.
Evaluating categorical encoding methods on a real credit card fraud detection database
Correctly dealing with categorical data in a supervised learning context is still a major issue. Furthermore, though some machine learning methods embody builtin methods to deal with categorical features, it is unclear whether they bring some improvements and how do they compare with usual categorical encoding methods. In this paper, we describe several well-known categorical encoding methods that are based on target statistics and weight of evidence. We apply them on a large and real credit card fraud detection database. Then, we train the encoded databases using state-of-the-art gradient boosting methods and evaluate their performances. We show that categorical encoding methods generally bring substantial improvements with respect to the absence of encoding. The contribution of this work is twofold: (1) we compare many state-of-the-art "lite" categorical encoding methods on a large scale database and (2) we use a real credit card fraud detection database.
Beyond Size: How Gradients Shape Pruning Decisions in Large Language Models
Large Language Models (LLMs) with a billion or more parameters are prime targets for network pruning, which aims to reduce a portion of the network weights without compromising performance. Prior approaches such as Weights Magnitude, SparseGPT, and Wanda, either concentrated solely on weights or integrated weights with activations for sparsity. However, they overlooked the informative gradients derived from pretrained large language models. In this paper, we present a novel sparsity-centric pruning method for pretrained LLMs, termed Gradient-based Language Model Pruner (GBLM-Pruner). GBLM-Pruner leverages the first-order term of the Taylor expansion, operating in a training-free manner by harnessing properly normalized gradients from a few calibration samples to determine the importance pruning score, and substantially outperforms competitive counterparts like SparseGPT and Wanda in multiple benchmarks. Intriguing, after incorporating gradients, the unstructured pruning method tends to reveal some structural patterns post-pruning, which mirrors the geometric interdependence inherent in the LLMs' parameter structure. Additionally, GBLM-Pruner functions without any subsequent retraining or weight updates to maintain its simplicity as other counterparts. Extensive evaluations on LLaMA-1 and LLaMA-2 across various language benchmarks and perplexity show that GBLM-Pruner surpasses magnitude pruning, Wanda (weights+activations) and SparseGPT (weights+activations+weight update) by significant margins. Our code and models are available at https://github.com/RocktimJyotiDas/GBLM-Pruner.
Transferable Adversarial Robustness for Categorical Data via Universal Robust Embeddings
Research on adversarial robustness is primarily focused on image and text data. Yet, many scenarios in which lack of robustness can result in serious risks, such as fraud detection, medical diagnosis, or recommender systems often do not rely on images or text but instead on tabular data. Adversarial robustness in tabular data poses two serious challenges. First, tabular datasets often contain categorical features, and therefore cannot be tackled directly with existing optimization procedures. Second, in the tabular domain, algorithms that are not based on deep networks are widely used and offer great performance, but algorithms to enhance robustness are tailored to neural networks (e.g. adversarial training). In this paper, we tackle both challenges. We present a method that allows us to train adversarially robust deep networks for tabular data and to transfer this robustness to other classifiers via universal robust embeddings tailored to categorical data. These embeddings, created using a bilevel alternating minimization framework, can be transferred to boosted trees or random forests making them robust without the need for adversarial training while preserving their high accuracy on tabular data. We show that our methods outperform existing techniques within a practical threat model suitable for tabular data.
To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers
Hierarchical classification offers an approach to incorporate the concept of mistake severity by leveraging a structured, labeled hierarchy. However, decoding in such settings frequently relies on heuristic decision rules, which may not align with task-specific evaluation metrics. In this work, we propose a framework for the optimal decoding of an output probability distribution with respect to a target metric. We derive optimal decision rules for increasingly complex prediction settings, providing universal algorithms when candidates are limited to the set of nodes. In the most general case of predicting a subset of nodes, we focus on rules dedicated to the hierarchical hF_{beta} scores, tailored to hierarchical settings. To demonstrate the practical utility of our approach, we conduct extensive empirical evaluations, showcasing the superiority of our proposed optimal strategies, particularly in underdetermined scenarios. These results highlight the potential of our methods to enhance the performance and reliability of hierarchical classifiers in real-world applications. The code is available at https://github.com/RomanPlaud/hierarchical_decision_rules
Categorical Foundations of Gradient-Based Learning
We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses, parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross-entropy, shedding new light on their similarities and differences. Our approach to gradient-based learning has examples generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be realized in the discrete setting of boolean circuits. Finally, we demonstrate the practical significance of our framework with an implementation in Python.
Communication-Efficient Decentralized Online Continuous DR-Submodular Maximization
Maximizing a monotone submodular function is a fundamental task in machine learning, economics, and statistics. In this paper, we present two communication-efficient decentralized online algorithms for the monotone continuous DR-submodular maximization problem, both of which reduce the number of per-function gradient evaluations and per-round communication complexity from T^{3/2} to 1. The first one, One-shot Decentralized Meta-Frank-Wolfe (Mono-DMFW), achieves a (1-1/e)-regret bound of O(T^{4/5}). As far as we know, this is the first one-shot and projection-free decentralized online algorithm for monotone continuous DR-submodular maximization. Next, inspired by the non-oblivious boosting function zhang2022boosting, we propose the Decentralized Online Boosting Gradient Ascent (DOBGA) algorithm, which attains a (1-1/e)-regret of O(T). To the best of our knowledge, this is the first result to obtain the optimal O(T) against a (1-1/e)-approximation with only one gradient inquiry for each local objective function per step. Finally, various experimental results confirm the effectiveness of the proposed methods.
An Empirical Analysis of Feature Engineering for Predictive Modeling
Machine learning models, such as neural networks, decision trees, random forests, and gradient boosting machines, accept a feature vector, and provide a prediction. These models learn in a supervised fashion where we provide feature vectors mapped to the expected output. It is common practice to engineer new features from the provided feature set. Such engineered features will either augment or replace portions of the existing feature vector. These engineered features are essentially calculated fields based on the values of the other features. Engineering such features is primarily a manual, time-consuming task. Additionally, each type of model will respond differently to different kinds of engineered features. This paper reports empirical research to demonstrate what kinds of engineered features are best suited to various machine learning model types. We provide this recommendation by generating several datasets that we designed to benefit from a particular type of engineered feature. The experiment demonstrates to what degree the machine learning model can synthesize the needed feature on its own. If a model can synthesize a planned feature, it is not necessary to provide that feature. The research demonstrated that the studied models do indeed perform differently with various types of engineered features.
Multicalibration as Boosting for Regression
We study the connection between multicalibration and boosting for squared error regression. First we prove a useful characterization of multicalibration in terms of a ``swap regret'' like condition on squared error. Using this characterization, we give an exceedingly simple algorithm that can be analyzed both as a boosting algorithm for regression and as a multicalibration algorithm for a class H that makes use only of a standard squared error regression oracle for H. We give a weak learning assumption on H that ensures convergence to Bayes optimality without the need to make any realizability assumptions -- giving us an agnostic boosting algorithm for regression. We then show that our weak learning assumption on H is both necessary and sufficient for multicalibration with respect to H to imply Bayes optimality. We also show that if H satisfies our weak learning condition relative to another class C then multicalibration with respect to H implies multicalibration with respect to C. Finally we investigate the empirical performance of our algorithm experimentally using an open source implementation that we make available. Our code repository can be found at https://github.com/Declancharrison/Level-Set-Boosting.
Feature Gradients: Scalable Feature Selection via Discrete Relaxation
In this paper we introduce Feature Gradients, a gradient-based search algorithm for feature selection. Our approach extends a recent result on the estimation of learnability in the sublinear data regime by showing that the calculation can be performed iteratively (i.e., in mini-batches) and in linear time and space with respect to both the number of features D and the sample size N . This, along with a discrete-to-continuous relaxation of the search domain, allows for an efficient, gradient-based search algorithm among feature subsets for very large datasets. Crucially, our algorithm is capable of finding higher-order correlations between features and targets for both the N > D and N < D regimes, as opposed to approaches that do not consider such interactions and/or only consider one regime. We provide experimental demonstration of the algorithm in small and large sample-and feature-size settings.
Make Prompt-based Black-Box Tuning Colorful: Boosting Model Generalization from Three Orthogonal Perspectives
Large language models (LLMs) have shown increasing power on various natural language processing (NLP) tasks. However, tuning these models for downstream tasks usually needs exorbitant costs or is unavailable due to commercial considerations. Recently, black-box tuning has been proposed to address this problem by optimizing task-specific prompts without accessing the gradients and hidden representations. However, most existing works have yet fully exploited the potential of gradient-free optimization under the scenario of few-shot learning. In this paper, we describe BBT-RGB, a suite of straightforward and complementary techniques for enhancing the efficiency and performance of black-box optimization. Specifically, our method includes three plug-and-play components: (1) Two-stage derivative-free optimization strategy that facilitates fast convergence and mitigates overfitting; (2) Automatic verbalizer construction with its novel usage under few-shot settings; (3) Better prompt initialization policy based on instruction search and auto-selected demonstration. Extensive experiments across various tasks on natural language understanding and inference demonstrate the effectiveness of our method. Our codes are publicly available at https://github.com/QiushiSun/BBT-RGB.
TreeGRPO: Tree-Advantage GRPO for Online RL Post-Training of Diffusion Models
Reinforcement learning (RL) post-training is crucial for aligning generative models with human preferences, but its prohibitive computational cost remains a major barrier to widespread adoption. We introduce TreeGRPO, a novel RL framework that dramatically improves training efficiency by recasting the denoising process as a search tree. From shared initial noise samples, TreeGRPO strategically branches to generate multiple candidate trajectories while efficiently reusing their common prefixes. This tree-structured approach delivers three key advantages: (1) High sample efficiency, achieving better performance under same training samples (2) Fine-grained credit assignment via reward backpropagation that computes step-specific advantages, overcoming the uniform credit assignment limitation of trajectory-based methods, and (3) Amortized computation where multi-child branching enables multiple policy updates per forward pass. Extensive experiments on both diffusion and flow-based models demonstrate that TreeGRPO achieves 2.4times faster training while establishing a superior Pareto frontier in the efficiency-reward trade-off space. Our method consistently outperforms GRPO baselines across multiple benchmarks and reward models, providing a scalable and effective pathway for RL-based visual generative model alignment. The project website is available at treegrpo.github.io.
Conan-embedding: General Text Embedding with More and Better Negative Samples
With the growing popularity of RAG, the capabilities of embedding models are gaining increasing attention. Embedding models are primarily trained through contrastive loss learning, with negative examples being a key component. Previous work has proposed various hard negative mining strategies, but these strategies are typically employed as preprocessing steps. In this paper, we propose the conan-embedding model, which maximizes the utilization of more and higher-quality negative examples. Specifically, since the model's ability to handle preprocessed negative examples evolves during training, we propose dynamic hard negative mining method to expose the model to more challenging negative examples throughout the training process. Secondly, contrastive learning requires as many negative examples as possible but is limited by GPU memory constraints. Therefore, we use a Cross-GPU balancing Loss to provide more negative examples for embedding training and balance the batch size across multiple tasks. Moreover, we also discovered that the prompt-response pairs from LLMs can be used for embedding training. Our approach effectively enhances the capabilities of embedding models, currently ranking first on the Chinese leaderboard of Massive text embedding benchmark
Seed-CTS: Unleashing the Power of Tree Search for Superior Performance in Competitive Coding Tasks
Competition-level code generation tasks pose significant challenges for current state-of-the-art large language models (LLMs). For example, on the LiveCodeBench-Hard dataset, models such as O1-Mini and O1-Preview achieve pass@1 rates of only 0.366 and 0.143, respectively. While tree search techniques have proven effective in domains like mathematics and general coding, their potential in competition-level code generation remains under-explored. In this work, we propose a novel token-level tree search method specifically designed for code generation. Leveraging Qwen2.5-Coder-32B-Instruct, our approach achieves a pass rate of 0.305 on LiveCodeBench-Hard, surpassing the pass@100 performance of GPT4o-0513 (0.245). Furthermore, by integrating Chain-of-Thought (CoT) prompting, we improve our method's performance to 0.351, approaching O1-Mini's pass@1 rate. To ensure reproducibility, we report the average number of generations required per problem by our tree search method on the test set. Our findings underscore the potential of tree search to significantly enhance performance on competition-level code generation tasks. This opens up new possibilities for large-scale synthesis of challenging code problems supervised fine-tuning (SFT) data, advancing competition-level code generation tasks.
BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning
Current pre-trained language models rely on large datasets for achieving state-of-the-art performance. However, past research has shown that not all examples in a dataset are equally important during training. In fact, it is sometimes possible to prune a considerable fraction of the training set while maintaining the test performance. Established on standard vision benchmarks, two gradient-based scoring metrics for finding important examples are GraNd and its estimated version, EL2N. In this work, we employ these two metrics for the first time in NLP. We demonstrate that these metrics need to be computed after at least one epoch of fine-tuning and they are not reliable in early steps. Furthermore, we show that by pruning a small portion of the examples with the highest GraNd/EL2N scores, we can not only preserve the test accuracy, but also surpass it. This paper details adjustments and implementation choices which enable GraNd and EL2N to be applied to NLP.
GradES: Significantly Faster Training in Transformers with Gradient-Based Early Stopping
Early stopping monitors global validation loss and halts all parameter updates simultaneously, which is computationally costly for large transformers due to the extended time required for validation inference. We propose GradES, a novel gradient-based early stopping approach that operates within transformer components (attention projections and Feed-Forward layer matrices). We found that different components converge at varying rates during fine-tuning. GradES tracks the magnitude of gradients in backpropagation for these matrices during training. When a projection matrix's gradients fall below a convergence threshold tau, we exclude that projection matrix from further updates individually, eliminating costly validation passes while allowing slow converging matrices to continue learning. By strategically freezing parameters when their gradients converge, GradES speeds up training time by 1.57--7.22times while simultaneously enhancing generalization through early prevention of overfitting, resulting in 1.2% higher average accuracy.
NeuralNDCG: Direct Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting
Learning to Rank (LTR) algorithms are usually evaluated using Information Retrieval metrics like Normalised Discounted Cumulative Gain (NDCG) or Mean Average Precision. As these metrics rely on sorting predicted items' scores (and thus, on items' ranks), their derivatives are either undefined or zero everywhere. This makes them unsuitable for gradient-based optimisation, which is the usual method of learning appropriate scoring functions. Commonly used LTR loss functions are only loosely related to the evaluation metrics, causing a mismatch between the optimisation objective and the evaluation criterion. In this paper, we address this mismatch by proposing NeuralNDCG, a novel differentiable approximation to NDCG. Since NDCG relies on the non-differentiable sorting operator, we obtain NeuralNDCG by relaxing that operator using NeuralSort, a differentiable approximation of sorting. As a result, we obtain a new ranking loss function which is an arbitrarily accurate approximation to the evaluation metric, thus closing the gap between the training and the evaluation of LTR models. We introduce two variants of the proposed loss function. Finally, the empirical evaluation shows that our proposed method outperforms previous work aimed at direct optimisation of NDCG and is competitive with the state-of-the-art methods.
Think&Cite: Improving Attributed Text Generation with Self-Guided Tree Search and Progress Reward Modeling
Despite their outstanding capabilities, large language models (LLMs) are prone to hallucination and producing factually incorrect information. This challenge has spurred efforts in attributed text generation, which prompts LLMs to generate content with supporting evidence. In this paper, we propose a novel framework, called Think&Cite, and formulate attributed text generation as a multi-step reasoning problem integrated with search. Specifically, we propose Self-Guided Monte Carlo Tree Search (SG-MCTS), which capitalizes on the self-reflection capability of LLMs to reflect on the intermediate states of MCTS for guiding the tree expansion process. To provide reliable and comprehensive feedback, we introduce Progress Reward Models to measure the progress of tree search from the root to the current state from two aspects, i.e., generation and attribution progress. We conduct extensive experiments on three datasets and the results show that our approach significantly outperforms baseline approaches.
One-for-All: Generalized LoRA for Parameter-Efficient Fine-tuning
We present Generalized LoRA (GLoRA), an advanced approach for universal parameter-efficient fine-tuning tasks. Enhancing Low-Rank Adaptation (LoRA), GLoRA employs a generalized prompt module to optimize pre-trained model weights and adjust intermediate activations, providing more flexibility and capability across diverse tasks and datasets. Moreover, GLoRA facilitates efficient parameter adaptation by employing a scalable, modular, layer-wise structure search that learns individual adapter of each layer. Originating from a unified mathematical formulation, GLoRA exhibits strong transfer learning, few-shot learning and domain generalization abilities, as it adjusts to new tasks through additional dimensions on weights and activations. Comprehensive experiments demonstrate that GLoRA outperforms all previous methods in natural, specialized, and structured benchmarks, achieving superior accuracy with fewer parameters and computations on various datasets. Furthermore, our structural re-parameterization design ensures that GLoRA incurs no extra inference cost, rendering it a practical solution for resource-limited applications. Code is available at: https://github.com/Arnav0400/ViT-Slim/tree/master/GLoRA.
Tree-Regularized Tabular Embeddings
Tabular neural network (NN) has attracted remarkable attentions and its recent advances have gradually narrowed the performance gap with respect to tree-based models on many public datasets. While the mainstreams focus on calibrating NN to fit tabular data, we emphasize the importance of homogeneous embeddings and alternately concentrate on regularizing tabular inputs through supervised pretraining. Specifically, we extend a recent work (DeepTLF) and utilize the structure of pretrained tree ensembles to transform raw variables into a single vector (T2V), or an array of tokens (T2T). Without loss of space efficiency, these binarized embeddings can be consumed by canonical tabular NN with fully-connected or attention-based building blocks. Through quantitative experiments on 88 OpenML datasets with binary classification task, we validated that the proposed tree-regularized representation not only tapers the difference with respect to tree-based models, but also achieves on-par and better performance when compared with advanced NN models. Most importantly, it possesses better robustness and can be easily scaled and generalized as standalone encoder for tabular modality. Codes: https://github.com/milanlx/tree-regularized-embedding.
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.
Approximating Language Model Training Data from Weights
Modern language models often have open weights but closed training data. We formalize the problem of data approximation from model weights and propose several baselines and metrics. We develop a gradient-based approach that selects the highest-matching data from a large public text corpus and show its effectiveness at recovering useful data given only weights of the original and finetuned models. Even when none of the true training data is known, our method is able to locate a small subset of public Web documents can be used to train a model to close to the original model performance given models trained for both classification and supervised-finetuning. On the AG News classification task, our method improves performance from 65% (using randomly selected data) to 80%, approaching the expert benchmark of 88%. When applied to a model trained with SFT on MSMARCO web documents, our method reduces perplexity from 3.3 to 2.3, compared to an expert LLAMA model's perplexity of 2.0.
Gradient-Free Structured Pruning with Unlabeled Data
Large Language Models (LLMs) have achieved great success in solving difficult tasks across many domains, but such success comes with a high computation cost, and inference latency. As developers and third parties customize these models, the need to provide efficient inference has increased. Many efforts have attempted to reduce inference cost through model compression techniques such as pruning and distillation. However, these techniques either require labeled data, or are time-consuming as they require the compressed model to be retrained to regain accuracy. In this paper, we propose a gradient-free structured pruning framework that uses only unlabeled data. An evaluation on the GLUE and SQuAD benchmarks using BERT_{BASE} and DistilBERT illustrates the effectiveness of the proposed approach. By only using the weights of the pre-trained model and unlabeled data, in a matter of a few minutes on a single GPU, up to 40% of the original FLOP count can be reduced with less than a 4% accuracy loss across all tasks considered.
MINI-LLM: Memory-Efficient Structured Pruning for Large Language Models
As Large Language Models (LLMs) grow dramatically in size, there is an increasing trend in compressing and speeding up these models. Previous studies have highlighted the usefulness of gradients for importance scoring in neural network compressing, especially in pruning medium-size networks. However, the substantial memory requirements involved in calculating gradients with backpropagation impede the utilization of gradients in guiding LLM pruning. As a result, most pruning strategies for LLMs rely on gradient-free criteria, such as weight magnitudes or a mix of magnitudes and activations. In this paper, we devise a hybrid pruning criterion, which appropriately integrates magnitude, activation, and gradient to capitalize on feature map sensitivity for pruning LLMs. To overcome memory requirement barriers, we estimate gradients using only forward passes. Based on this, we propose a Memory-effIcieNt structured prunIng procedure for LLMs (MINI-LLM) to remove no-critical channels and multi-attention heads. Experimental results demonstrate the superior performance of MINI-LLM over existing gradient-free methods on three LLMs: LLaMA, BLOOM, and OPT across various downstream tasks (classification, multiple-choice, and generation), while MINI-LLM maintains a GPU memory footprint akin to gradient-free methods.
Distilling a Neural Network Into a Soft Decision Tree
Deep neural networks have proved to be a very effective way to perform classification tasks. They excel when the input data is high dimensional, the relationship between the input and the output is complicated, and the number of labeled training examples is large. But it is hard to explain why a learned network makes a particular classification decision on a particular test case. This is due to their reliance on distributed hierarchical representations. If we could take the knowledge acquired by the neural net and express the same knowledge in a model that relies on hierarchical decisions instead, explaining a particular decision would be much easier. We describe a way of using a trained neural net to create a type of soft decision tree that generalizes better than one learned directly from the training data.
Booster: Tackling Harmful Fine-tuning for Large Language Models via Attenuating Harmful Perturbation
Harmful fine-tuning issue qi2023fine poses serious safety concerns for Large language models' fine-tuning-as-a-service. While existing defenses huang2024vaccine,rosati2024representation have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. For the first time in the literature, we in this paper show that harmful perturbation over the model weights should be the root cause of alignment-broken of harmful fine-tuning. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage's optimization. The regularizer ensures that the model's harmful loss reduction before/after simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster.
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Note: This paper describes an older version of DeepLIFT. See https://arxiv.org/abs/1704.02685 for the newer version. Original abstract follows: The purported "black box" nature of neural networks is a barrier to adoption in applications where interpretability is essential. Here we present DeepLIFT (Learning Important FeaTures), an efficient and effective method for computing importance scores in a neural network. DeepLIFT compares the activation of each neuron to its 'reference activation' and assigns contribution scores according to the difference. We apply DeepLIFT to models trained on natural images and genomic data, and show significant advantages over gradient-based methods.
On the Robustness of Randomized Ensembles to Adversarial Perturbations
Randomized ensemble classifiers (RECs), where one classifier is randomly selected during inference, have emerged as an attractive alternative to traditional ensembling methods for realizing adversarially robust classifiers with limited compute requirements. However, recent works have shown that existing methods for constructing RECs are more vulnerable than initially claimed, casting major doubts on their efficacy and prompting fundamental questions such as: "When are RECs useful?", "What are their limits?", and "How do we train them?". In this work, we first demystify RECs as we derive fundamental results regarding their theoretical limits, necessary and sufficient conditions for them to be useful, and more. Leveraging this new understanding, we propose a new boosting algorithm (BARRE) for training robust RECs, and empirically demonstrate its effectiveness at defending against strong ell_infty norm-bounded adversaries across various network architectures and datasets. Our code can be found at https://github.com/hsndbk4/BARRE.
CQ-DINO: Mitigating Gradient Dilution via Category Queries for Vast Vocabulary Object Detection
With the exponential growth of data, traditional object detection methods are increasingly struggling to handle vast vocabulary object detection tasks effectively. We analyze two key limitations of classification-based detectors: positive gradient dilution, where rare positive categories receive insufficient learning signals, and hard negative gradient dilution, where discriminative gradients are overwhelmed by numerous easy negatives. To address these challenges, we propose CQ-DINO, a category query-based object detection framework that reformulates classification as a contrastive task between object queries and learnable category queries. Our method introduces image-guided query selection, which reduces the negative space by adaptively retrieving top-K relevant categories per image via cross-attention, thereby rebalancing gradient distributions and facilitating implicit hard example mining. Furthermore, CQ-DINO flexibly integrates explicit hierarchical category relationships in structured datasets (e.g., V3Det) or learns implicit category correlations via self-attention in generic datasets (e.g., COCO). Experiments demonstrate that CQ-DINO achieves superior performance on the challenging V3Det benchmark (surpassing previous methods by 2.1% AP) while maintaining competitiveness in COCO. Our work provides a scalable solution for real-world detection systems requiring wide category coverage. The code is publicly at https://github.com/RedAIGC/CQ-DINO.
Autoregressive Generation of Static and Growing Trees
We propose a transformer architecture and training strategy for tree generation. The architecture processes data at multiple resolutions and has an hourglass shape, with middle layers processing fewer tokens than outer layers. Similar to convolutional networks, we introduce longer range skip connections to completent this multi-resolution approach. The key advantage of this architecture is the faster processing speed and lower memory consumption. We are therefore able to process more complex trees than would be possible with a vanilla transformer architecture. Furthermore, we extend this approach to perform image-to-tree and point-cloud-to-tree conditional generation and to simulate the tree growth processes, generating 4D trees. Empirical results validate our approach in terms of speed, memory consumption, and generation quality.
LG-ANNA-Embedding technical report
This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks. Built upon a decoder-only large language model (Mistral-7B), our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings without task-specific fine-tuning. Structured instructions and few-shot examples are used to guide the model across diverse tasks, enabling strong performance on classification, semantic similarity, clustering, and reranking benchmarks. To improve semantic discrimination, we employ a soft labeling framework where continuous relevance scores, distilled from a high-performance dense retriever and reranker, serve as fine-grained supervision signals. In addition, we introduce adaptive margin-based hard-negative mining, which filters out semantically ambiguous negatives based on their similarity to positive examples, thereby enhancing training stability and retrieval robustness. Our model is evaluated on the newly introduced MTEB (English, v2) benchmark, covering 41 tasks across seven categories. Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score, outperforming several larger or fully fine-tuned baselines. These findings highlight the effectiveness of combining in-context prompting, soft supervision, and adaptive sampling for scalable, high-quality embedding generation.
Domain-Agnostic Neural Architecture for Class Incremental Continual Learning in Document Processing Platform
Production deployments in complex systems require ML architectures to be highly efficient and usable against multiple tasks. Particularly demanding are classification problems in which data arrives in a streaming fashion and each class is presented separately. Recent methods with stochastic gradient learning have been shown to struggle in such setups or have limitations like memory buffers, and being restricted to specific domains that disable its usage in real-world scenarios. For this reason, we present a fully differentiable architecture based on the Mixture of Experts model, that enables the training of high-performance classifiers when examples from each class are presented separately. We conducted exhaustive experiments that proved its applicability in various domains and ability to learn online in production environments. The proposed technique achieves SOTA results without a memory buffer and clearly outperforms the reference methods.
TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks
While tabular classification has traditionally relied on from-scratch training, a recent breakthrough called prior-data fitted networks (PFNs) challenges this approach. Similar to large language models, PFNs make use of pretraining and in-context learning to achieve strong performance on new tasks in a single forward pass. However, current PFNs have limitations that prohibit their widespread adoption. Notably, TabPFN achieves very strong performance on small tabular datasets but is not designed to make predictions for datasets of size larger than 1000. In this work, we overcome these limitations and substantially improve the performance of PFNs via context optimization. We introduce TuneTables, a parameter-efficient fine-tuning strategy for PFNs that compresses large datasets into a smaller learned context. We conduct extensive experiments on 19 algorithms over 98 datasets and find that TuneTables achieves the best performance on average, outperforming boosted trees such as CatBoost, while optimizing fewer than 5% of TabPFN's parameters. Furthermore, we show that TuneTables can be used as an interpretability tool and can even be used to mitigate biases by optimizing a fairness objective. We open-source our code and raw results at https://github.com/penfever/TuneTables.
GaLore 2: Large-Scale LLM Pre-Training by Gradient Low-Rank Projection
Large language models (LLMs) have revolutionized natural language understanding and generation but face significant memory bottlenecks during training. GaLore, Gradient Low-Rank Projection, addresses this issue by leveraging the inherent low-rank structure of weight gradients, enabling substantial memory savings without sacrificing performance. Recent works further extend GaLore from various aspects, including low-bit quantization and higher-order tensor structures. However, there are several remaining challenges for GaLore, such as the computational overhead of SVD for subspace updates and the integration with state-of-the-art training parallelization strategies (e.g., FSDP). In this paper, we present GaLore 2, an efficient and scalable GaLore framework that addresses these challenges and incorporates recent advancements. In addition, we demonstrate the scalability of GaLore 2 by pre-training Llama 7B from scratch using up to 500 billion training tokens, highlighting its potential impact on real LLM pre-training scenarios.
ML4CO-KIDA: Knowledge Inheritance in Dataset Aggregation
The Machine Learning for Combinatorial Optimization (ML4CO) NeurIPS 2021 competition aims to improve state-of-the-art combinatorial optimization solvers by replacing key heuristic components with machine learning models. On the dual task, we design models to make branching decisions to promote the dual bound increase faster. We propose a knowledge inheritance method to generalize knowledge of different models from the dataset aggregation process, named KIDA. Our improvement overcomes some defects of the baseline graph-neural-networks-based methods. Further, we won the 1st Place on the dual task. We hope this report can provide useful experience for developers and researchers. The code is available at https://github.com/megvii-research/NeurIPS2021-ML4CO-KIDA.
XGrad: Boosting Gradient-Based Optimizers With Weight Prediction
In this paper, we propose a general deep learning training framework XGrad which introduces weight prediction into the popular gradient-based optimizers to boost their convergence and generalization when training the deep neural network (DNN) models. In particular, ahead of each mini-batch training, the future weights are predicted according to the update rule of the used optimizer and are then applied to both the forward pass and backward propagation. In this way, during the whole training period, the optimizer always utilizes the gradients w.r.t. the future weights to update the DNN parameters, making the gradient-based optimizer achieve better convergence and generalization compared to the original optimizer without weight prediction. XGrad is rather straightforward to implement yet pretty effective in boosting the convergence of gradient-based optimizers and the accuracy of DNN models. Empirical results concerning the most three popular gradient-based optimizers including SGD with momentum, Adam, and AdamW demonstrate the effectiveness of our proposal. The experimental results validate that XGrad can attain higher model accuracy than the original optimizers when training the DNN models. The code of XGrad will be available at: https://github.com/guanleics/XGrad.
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper investigates the distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) designed for differentiable functions. First, we demonstrate significant differences in the convergence properties of NGDMs compared to GDs, challenging the applicability of the extensive neural network convergence literature based on L-smoothness to non-smooth neural networks. Next, we demonstrate the paradoxical nature of NGDM solutions for L_{1}-regularized problems, showing that increasing the regularization penalty leads to an increase in the L_{1} norm of optimal solutions in NGDMs. Consequently, we show that widely adopted L_{1} penalization-based techniques for network pruning do not yield expected results. Finally, we explore the Edge of Stability phenomenon, indicating its inapplicability even to Lipschitz continuous convex differentiable functions, leaving its relevance to non-convex non-differentiable neural networks inconclusive. Our analysis exposes misguided interpretations of NGDMs in widely referenced papers and texts due to an overreliance on strong smoothness assumptions, emphasizing the necessity for a nuanced understanding of foundational assumptions in the analysis of these systems.
Symbolic Discovery of Optimization Algorithms
We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, Lion (Evo\textbf{Lved Sign Momentum}). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% zero-shot and 91.1% fine-tuning accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. The implementation of Lion is publicly available.
Neural Architecture Search via Combinatorial Multi-Armed Bandit
Neural Architecture Search (NAS) has gained significant popularity as an effective tool for designing high performance deep neural networks (DNNs). NAS can be performed via policy gradient, evolutionary algorithms, differentiable architecture search or tree-search methods. While significant progress has been made for both policy gradient and differentiable architecture search, tree-search methods have so far failed to achieve comparable accuracy or search efficiency. In this paper, we formulate NAS as a Combinatorial Multi-Armed Bandit (CMAB) problem (CMAB-NAS). This allows the decomposition of a large search space into smaller blocks where tree-search methods can be applied more effectively and efficiently. We further leverage a tree-based method called Nested Monte-Carlo Search to tackle the CMAB-NAS problem. On CIFAR-10, our approach discovers a cell structure that achieves a low error rate that is comparable to the state-of-the-art, using only 0.58 GPU days, which is 20 times faster than current tree-search methods. Moreover, the discovered structure transfers well to large-scale datasets such as ImageNet.
Fast Tree-Field Integrators: From Low Displacement Rank to Topological Transformers
We present a new class of fast polylog-linear algorithms based on the theory of structured matrices (in particular low displacement rank) for integrating tensor fields defined on weighted trees. Several applications of the resulting fast tree-field integrators (FTFIs) are presented, including (a) approximation of graph metrics with tree metrics, (b) graph classification, (c) modeling on meshes, and finally (d) Topological Transformers (TTs) (Choromanski et al., 2022) for images. For Topological Transformers, we propose new relative position encoding (RPE) masking mechanisms with as few as three extra learnable parameters per Transformer layer, leading to 1.0-1.5%+ accuracy gains. Importantly, most of FTFIs are exact methods, thus numerically equivalent to their brute-force counterparts. When applied to graphs with thousands of nodes, those exact algorithms provide 5.7-13x speedups. We also provide an extensive theoretical analysis of our methods.
Learning to Branch for Multi-Task Learning
Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide sub-optimal end results and often require huge efforts for the trial-and-error process. In this work, we present an automated multi-task learning algorithm that learns where to share or branch within a network, designing an effective network topology that is directly optimized for multiple objectives across tasks. Specifically, we propose a novel tree-structured design space that casts a tree branching operation as a gumbel-softmax sampling procedure. This enables differentiable network splitting that is end-to-end trainable. We validate the proposed method on controlled synthetic data, CelebA, and Taskonomy.
FRUGAL: Memory-Efficient Optimization by Reducing State Overhead for Scalable Training
With the increase in the number of parameters in large language models, the process of pre-training and fine-tuning increasingly demands larger volumes of GPU memory. A significant portion of this memory is typically consumed by the optimizer state. To overcome this challenge, recent approaches such as low-rank adaptation (LoRA (Hu et al., 2021)), low-rank gradient projection (GaLore (Zhao et al., 2024)), and blockwise optimization (BAdam (Luo et al., 2024)) have been proposed. However, in all these algorithms, the effective rank of the weight updates remains low-rank, which can lead to a substantial loss of information from the gradient. This loss can be critically important, especially during the pre-training stage. In this paper, we introduce FRUGAL (Full-Rank Updates with GrAdient spLitting), a new memory-efficient optimization framework. FRUGAL leverages gradient splitting to perform low-dimensional updates using advanced algorithms (such as Adam), while updates along the remaining directions are executed via state-free methods like SGD or signSGD (Bernstein et al., 2018). Our framework can be integrated with various low-rank update selection techniques, including GaLore and BAdam. We provide theoretical convergence guarantees for our framework when using SGDM for low-dimensional updates and SGD for state-free updates. Additionally, our method consistently outperforms concurrent approaches across various fixed memory budgets, achieving state-of-the-art results in pre-training and fine-tuning tasks while balancing memory efficiency and performance metrics.
Fast Online Node Labeling for Very Large Graphs
This paper studies the online node classification problem under a transductive learning setting. Current methods either invert a graph kernel matrix with O(n^3) runtime and O(n^2) space complexity or sample a large volume of random spanning trees, thus are difficult to scale to large graphs. In this work, we propose an improvement based on the online relaxation technique introduced by a series of works (Rakhlin et al.,2012; Rakhlin and Sridharan, 2015; 2017). We first prove an effective regret O(n^{1+gamma}) when suitable parameterized graph kernels are chosen, then propose an approximate algorithm FastONL enjoying O(kn^{1+gamma}) regret based on this relaxation. The key of FastONL is a generalized local push method that effectively approximates inverse matrix columns and applies to a series of popular kernels. Furthermore, the per-prediction cost is O(vol({S})log 1/epsilon) locally dependent on the graph with linear memory cost. Experiments show that our scalable method enjoys a better tradeoff between local and global consistency.
Grams: Gradient Descent with Adaptive Momentum Scaling
We introduce Gradient Descent with Adaptive Momentum Scaling (Grams), a novel optimization algorithm that decouples the direction and magnitude of parameter updates in deep learning. Unlike traditional optimizers that directly integrate momentum into updates, Grams separates the update direction, derived from current gradients, from momentum, which is used solely for adaptive magnitude scaling. This approach enables Grams to achieve improved loss descent compared to state-of-the-art cautious and momentum-based optimizers. We establish a global convergence guarantee for Grams and validate its effectiveness through extensive empirical evaluations. The results demonstrate Grams' superior performance, including faster convergence and better generalization, compared to widely-used optimizers such as Adam, Lion, and their cautious variants. Our results highlight Grams' potential as a transformative approach for efficient optimization in large-scale machine learning.
BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark.
Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional Networks and Syntax-based Regulation
Aspect-based Sentiment Analysis (ABSA) seeks to predict the sentiment polarity of a sentence toward a specific aspect. Recently, it has been shown that dependency trees can be integrated into deep learning models to produce the state-of-the-art performance for ABSA. However, these models tend to compute the hidden/representation vectors without considering the aspect terms and fail to benefit from the overall contextual importance scores of the words that can be obtained from the dependency tree for ABSA. In this work, we propose a novel graph-based deep learning model to overcome these two issues of the prior work on ABSA. In our model, gate vectors are generated from the representation vectors of the aspect terms to customize the hidden vectors of the graph-based models toward the aspect terms. In addition, we propose a mechanism to obtain the importance scores for each word in the sentences based on the dependency trees that are then injected into the model to improve the representation vectors for ABSA. The proposed model achieves the state-of-the-art performance on three benchmark datasets.
Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making
Experts advising decision-makers are likely to display expertise which varies as a function of the problem instance. In practice, this may lead to sub-optimal or discriminatory decisions against minority cases. In this work we model such changes in depth and breadth of knowledge as a partitioning of the problem space into regions of differing expertise. We provide here new algorithms that explicitly consider and adapt to the relationship between problem instances and experts' knowledge. We first propose and highlight the drawbacks of a naive approach based on nearest neighbor queries. To address these drawbacks we then introduce a novel algorithm - expertise trees - that constructs decision trees enabling the learner to select appropriate models. We provide theoretical insights and empirically validate the improved performance of our novel approach on a range of problems for which existing methods proved to be inadequate.
GSLB: The Graph Structure Learning Benchmark
Graph Structure Learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despite the proliferation of GSL methods developed in recent years, there is no standard experimental setting or fair comparison for performance evaluation, which creates a great obstacle to understanding the progress in this field. To fill this gap, we systematically analyze the performance of GSL in different scenarios and develop a comprehensive Graph Structure Learning Benchmark (GSLB) curated from 20 diverse graph datasets and 16 distinct GSL algorithms. Specifically, GSLB systematically investigates the characteristics of GSL in terms of three dimensions: effectiveness, robustness, and complexity. We comprehensively evaluate state-of-the-art GSL algorithms in node- and graph-level tasks, and analyze their performance in robust learning and model complexity. Further, to facilitate reproducible research, we have developed an easy-to-use library for training, evaluating, and visualizing different GSL methods. Empirical results of our extensive experiments demonstrate the ability of GSL and reveal its potential benefits on various downstream tasks, offering insights and opportunities for future research. The code of GSLB is available at: https://github.com/GSL-Benchmark/GSLB.
Auto-Meta: Automated Gradient Based Meta Learner Search
Fully automating machine learning pipelines is one of the key challenges of current artificial intelligence research, since practical machine learning often requires costly and time-consuming human-powered processes such as model design, algorithm development, and hyperparameter tuning. In this paper, we verify that automated architecture search synergizes with the effect of gradient-based meta learning. We adopt the progressive neural architecture search liu:pnas_google:DBLP:journals/corr/abs-1712-00559 to find optimal architectures for meta-learners. The gradient based meta-learner whose architecture was automatically found achieved state-of-the-art results on the 5-shot 5-way Mini-ImageNet classification problem with 74.65% accuracy, which is 11.54% improvement over the result obtained by the first gradient-based meta-learner called MAML finn:maml:DBLP:conf/icml/FinnAL17. To our best knowledge, this work is the first successful neural architecture search implementation in the context of meta learning.
Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence
Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization.
A second-order-like optimizer with adaptive gradient scaling for deep learning
In this empirical article, we introduce INNAprop, an optimization algorithm that combines the INNA method with the RMSprop adaptive gradient scaling. It leverages second-order information and rescaling while keeping the memory requirements of standard DL methods as AdamW or SGD with momentum.After having recalled our geometrical motivations, we provide quite extensive experiments. On image classification (CIFAR-10, ImageNet) and language modeling (GPT-2), INNAprop consistently matches or outperforms AdamW both in training speed and accuracy, with minimal hyperparameter tuning in large-scale settings. Our code is publicly available at https://github.com/innaprop/innaprop.
Automatic Prompt Optimization with "Gradient Descent" and Beam Search
Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Automatic Prompt Optimization (APO), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language ``gradients'' that criticize the current prompt. The gradients are then ``propagated'' into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt's performance by up to 31\%, by using data to rewrite vague task descriptions into more precise annotation instructions.
