new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction

Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.

  • 7 authors
·
Aug 5 2

ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code

Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.

  • 10 authors
·
Apr 29

Evolutionary Perspectives on the Evaluation of LLM-Based AI Agents: A Comprehensive Survey

The advent of large language models (LLMs), such as GPT, Gemini, and DeepSeek, has significantly advanced natural language processing, giving rise to sophisticated chatbots capable of diverse language-related tasks. The transition from these traditional LLM chatbots to more advanced AI agents represents a pivotal evolutionary step. However, existing evaluation frameworks often blur the distinctions between LLM chatbots and AI agents, leading to confusion among researchers selecting appropriate benchmarks. To bridge this gap, this paper introduces a systematic analysis of current evaluation approaches, grounded in an evolutionary perspective. We provide a detailed analytical framework that clearly differentiates AI agents from LLM chatbots along five key aspects: complex environment, multi-source instructor, dynamic feedback, multi-modal perception, and advanced capability. Further, we categorize existing evaluation benchmarks based on external environments driving forces, and resulting advanced internal capabilities. For each category, we delineate relevant evaluation attributes, presented comprehensively in practical reference tables. Finally, we synthesize current trends and outline future evaluation methodologies through four critical lenses: environment, agent, evaluator, and metrics. Our findings offer actionable guidance for researchers, facilitating the informed selection and application of benchmarks in AI agent evaluation, thus fostering continued advancement in this rapidly evolving research domain.

  • 12 authors
·
Jun 6

Rethinking Agent Design: From Top-Down Workflows to Bottom-Up Skill Evolution

Most LLM-based agent frameworks adopt a top-down philosophy: humans decompose tasks, define workflows, and assign agents to execute each step. While effective on benchmark-style tasks, such systems rely on designer updates and overlook agents' potential to learn from experience. Recently, Silver and Sutton(2025) envision a shift into a new era, where agents could progress from a stream of experiences. In this paper, we instantiate this vision of experience-driven learning by introducing a bottom-up agent paradigm that mirrors the human learning process. Agents acquire competence through a trial-and-reasoning mechanism-exploring, reflecting on outcomes, and abstracting skills over time. Once acquired, skills can be rapidly shared and extended, enabling continual evolution rather than static replication. As more agents are deployed, their diverse experiences accelerate this collective process, making bottom-up design especially suited for open-ended environments. We evaluate this paradigm in Slay the Spire and Civilization V, where agents perceive through raw visual inputs and act via mouse outputs, the same as human players. Using a unified, game-agnostic codebase without any game-specific prompts or privileged APIs, our bottom-up agents acquire skills entirely through autonomous interaction, demonstrating the potential of the bottom-up paradigm in complex, real-world environments. Our code is available at https://github.com/AngusDujw/Bottom-Up-Agent.

  • 6 authors
·
May 23

DiscoveryBench: Towards Data-Driven Discovery with Large Language Models

Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery. The benchmark is designed to systematically assess current model capabilities in discovery tasks and provide a useful resource for improving them. Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering, by manually deriving discovery workflows from published papers to approximate the real-world challenges faced by researchers, where each task is defined by a dataset, its metadata, and a discovery goal in natural language. We additionally provide 903 synthetic tasks to conduct controlled evaluations across task complexity. Furthermore, our structured formalism of data-driven discovery enables a facet-based evaluation that provides useful insights into different failure modes. We evaluate several popular LLM-based reasoning frameworks using both open and closed LLMs as baselines on DiscoveryBench and find that even the best system scores only 25%. Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.

  • 10 authors
·
Jul 1, 2024

Cascading Adversarial Bias from Injection to Distillation in Language Models

Model distillation has become essential for creating smaller, deployable language models that retain larger system capabilities. However, widespread deployment raises concerns about resilience to adversarial manipulation. This paper investigates vulnerability of distilled models to adversarial injection of biased content during training. We demonstrate that adversaries can inject subtle biases into teacher models through minimal data poisoning, which propagates to student models and becomes significantly amplified. We propose two propagation modes: Untargeted Propagation, where bias affects multiple tasks, and Targeted Propagation, focusing on specific tasks while maintaining normal behavior elsewhere. With only 25 poisoned samples (0.25% poisoning rate), student models generate biased responses 76.9% of the time in targeted scenarios - higher than 69.4% in teacher models. For untargeted propagation, adversarial bias appears 6x-29x more frequently in student models on unseen tasks. We validate findings across six bias types (targeted advertisements, phishing links, narrative manipulations, insecure coding practices), various distillation methods, and different modalities spanning text and code generation. Our evaluation reveals shortcomings in current defenses - perplexity filtering, bias detection systems, and LLM-based autorater frameworks - against these attacks. Results expose significant security vulnerabilities in distilled models, highlighting need for specialized safeguards. We propose practical design principles for building effective adversarial bias mitigation strategies.

  • 6 authors
·
May 30 2

Are Large Language Models Post Hoc Explainers?

Large Language Models (LLMs) are increasingly used as powerful tools for a plethora of natural language processing (NLP) applications. A recent innovation, in-context learning (ICL), enables LLMs to learn new tasks by supplying a few examples in the prompt during inference time, thereby eliminating the need for model fine-tuning. While LLMs have been utilized in several applications, their applicability in explaining the behavior of other models remains relatively unexplored. Despite the growing number of new explanation techniques, many require white-box access to the model and/or are computationally expensive, highlighting a need for next-generation post hoc explainers. In this work, we present the first framework to study the effectiveness of LLMs in explaining other predictive models. More specifically, we propose a novel framework encompassing multiple prompting strategies: i) Perturbation-based ICL, ii) Prediction-based ICL, iii) Instruction-based ICL, and iv) Explanation-based ICL, with varying levels of information about the underlying ML model and the local neighborhood of the test sample. We conduct extensive experiments with real-world benchmark datasets to demonstrate that LLM-generated explanations perform on par with state-of-the-art post hoc explainers using their ability to leverage ICL examples and their internal knowledge in generating model explanations. On average, across four datasets and two ML models, we observe that LLMs identify the most important feature with 72.19% accuracy, opening up new frontiers in explainable artificial intelligence (XAI) to explore LLM-based explanation frameworks.

  • 5 authors
·
Oct 9, 2023

Enhancing Financial Question Answering with a Multi-Agent Reflection Framework

While Large Language Models (LLMs) have shown impressive capabilities in numerous Natural Language Processing (NLP) tasks, they still struggle with financial question answering (QA), particularly when numerical reasoning is required. Recently, LLM-based multi-agent frameworks have demonstrated remarkable effectiveness in multi-step reasoning, which is crucial for financial QA tasks as it involves extracting relevant information from tables and text and then performing numerical reasoning on the extracted data to infer answers. In this study, we propose a multi-agent framework incorporating a critic agent that reflects on the reasoning steps and final answers for each question. Additionally, we enhance our system by adding multiple critic agents, each focusing on a specific aspect of the answer. Our results indicate that this framework significantly improves performance compared to single-agent reasoning, with an average performance increase of 15% for the LLaMA3-8B model and 5% for the LLaMA3-70B model. Furthermore, our framework performs on par with, and in some cases surpasses, larger single-agent LLMs such as LLaMA3.1-405B and GPT-4o-mini, though it falls slightly short compared to Claude-3.5 Sonnet. Overall, our framework presents an effective solution to enhance open-source LLMs for financial QA tasks, offering a cost-effective alternative to larger models like Claude-3.5 Sonnet.

  • 2 authors
·
Oct 29, 2024

UniSS: Unified Expressive Speech-to-Speech Translation with Your Voice

The ultimate goal of expressive speech-to-speech translation (S2ST) is to accurately translate spoken content while preserving the speaker identity and emotional style. However, progress in this field is largely hindered by three key challenges: the scarcity of paired speech data that retains expressive styles, the complexity of multi-stage processing pipelines, and the limited transfer of translation capabilities from large language models (LLMs). In this work, we address these challenges by introducing UniSS, a novel single-stage framework for expressive S2ST. Our approach features carefully designed speech semantic and style modeling, enabling seamless integration with existing text-based LLM frameworks to develop a unified text-speech language model. To transfer translation capabilities from text to speech, we propose a cross-modal chain-of-thought prompting process that progressively aligns audio semantics with text and ensures style preservation in the decoded results. Furthermore, we construct and release a large-scale, high-quality expressive S2ST dataset, UniST, comprising 44.8k hours of data. Experimental results show that UniSS significantly outperforms previous methods in translation fidelity and speech quality while preserving voice, emotion, and duration consistency. Our work establishes a simpler and more effective paradigm for building the next generation of expressive S2ST systems. Audio samples are available at https://cmots.github.io/uniss-demo.

  • 8 authors
·
Sep 25

A Survey on (M)LLM-Based GUI Agents

Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation.

  • 15 authors
·
Mar 27

Enhancing LLM-Based Agents via Global Planning and Hierarchical Execution

Intelligent agent systems based on Large Language Models (LLMs) have shown great potential in real-world applications. However, existing agent frameworks still face critical limitations in task planning and execution, restricting their effectiveness and generalizability. Specifically, current planning methods often lack clear global goals, leading agents to get stuck in local branches, or produce non-executable plans. Meanwhile, existing execution mechanisms struggle to balance complexity and stability, and their limited action space restricts their ability to handle diverse real-world tasks. To address these limitations, we propose GoalAct, a novel agent framework that introduces a continuously updated global planning mechanism and integrates a hierarchical execution strategy. GoalAct decomposes task execution into high-level skills, including searching, coding, writing and more, thereby reducing planning complexity while enhancing the agents' adaptability across diverse task scenarios. We evaluate GoalAct on LegalAgentBench, a benchmark with multiple types of legal tasks that require the use of multiple types of tools. Experimental results demonstrate that GoalAct achieves state-of-the-art (SOTA) performance, with an average improvement of 12.22% in success rate. These findings highlight GoalAct's potential to drive the development of more advanced intelligent agent systems, making them more effective across complex real-world applications. Our code can be found at https://github.com/cjj826/GoalAct.

  • 5 authors
·
Apr 23

CodeCoR: An LLM-Based Self-Reflective Multi-Agent Framework for Code Generation

Code generation aims to produce code that fulfills requirements written in natural languages automatically. Large language Models (LLMs) like ChatGPT have demonstrated promising effectiveness in this area. Nonetheless, these LLMs often fail to ensure the syntactic and semantic correctness of the generated code. Recently, researchers proposed multi-agent frameworks that guide LLMs with different prompts to analyze programming tasks, generate code, perform testing in a sequential workflow. However, the performance of the workflow is not robust as the code generation depends on the performance of each agent. To address this challenge, we propose CodeCoR, a self-reflective multi-agent framework that evaluates the effectiveness of each agent and their collaborations. Specifically, for a given task description, four agents in CodeCoR generate prompts, code, test cases, and repair advice, respectively. Each agent generates more than one output and prunes away the low-quality ones. The generated code is tested in the local environment: the code that fails to pass the generated test cases is sent to the repair agent and the coding agent re-generates the code based on repair advice. Finally, the code that passes the most number of generated test cases is returned to users. Our experiments on four widely used datasets, HumanEval, HumanEval-ET, MBPP, and MBPP-ET, demonstrate that CodeCoR significantly outperforms existing baselines (e.g., CodeCoT and MapCoder), achieving an average Pass@1 score of 77.8%.

  • 3 authors
·
Jan 13

Creating an LLM-based AI-agent: A high-level methodology towards enhancing LLMs with APIs

Large Language Models (LLMs) have revolutionized various aspects of engineering and science. Their utility is often bottlenecked by the lack of interaction with the external digital environment. To overcome this limitation and achieve integration of LLMs and Artificial Intelligence (AI) into real-world applications, customized AI agents are being constructed. Based on the technological trends and techniques, we extract a high-level approach for constructing these AI agents, focusing on their underlying architecture. This thesis serves as a comprehensive guide that elucidates a multi-faceted approach for empowering LLMs with the capability to leverage Application Programming Interfaces (APIs). We present a 7-step methodology that begins with the selection of suitable LLMs and the task decomposition that is necessary for complex problem-solving. This methodology includes techniques for generating training data for API interactions and heuristics for selecting the appropriate API among a plethora of options. These steps eventually lead to the generation of API calls that are both syntactically and semantically aligned with the LLM's understanding of a given task. Moreover, we review existing frameworks and tools that facilitate these processes and highlight the gaps in current attempts. In this direction, we propose an on-device architecture that aims to exploit the functionality of carry-on devices by using small models from the Hugging Face community. We examine the effectiveness of these approaches on real-world applications of various domains, including the generation of a piano sheet. Through an extensive analysis of the literature and available technologies, this thesis aims to set a compass for researchers and practitioners to harness the full potential of LLMs augmented with external tool capabilities, thus paving the way for more autonomous, robust, and context-aware AI agents.

  • 1 authors
·
Dec 17, 2024

NitiBench: A Comprehensive Studies of LLM Frameworks Capabilities for Thai Legal Question Answering

The application of large language models (LLMs) in the legal domain holds significant potential for information retrieval and question answering, yet Thai legal QA systems face challenges due to a lack of standardized evaluation benchmarks and the complexity of Thai legal structures. This paper introduces NitiBench, a benchmark comprising two datasets: the NitiBench-CCL, covering general Thai financial law, and the NitiBench-Tax, which includes real-world tax law cases requiring advanced legal reasoning. We evaluate retrieval-augmented generation (RAG) and long-context LLM-based approaches to address three key research questions: the impact of domain-specific components like section-based chunking and cross-referencing, the comparative performance of different retrievers and LLMs, and the viability of long-context LLMs as an alternative to RAG. Our results show that section-based chunking significantly improves retrieval and end-to-end performance, current retrievers struggle with complex queries, and long-context LLMs still underperform RAG-based systems in Thai legal QA. To support fair evaluation, we propose tailored multi-label retrieval metrics and the use of an LLM-as-judge for coverage and contradiction detection method. These findings highlight the limitations of current Thai legal NLP solutions and provide a foundation for future research in the field. We also open-sourced our codes and dataset to available publicly.

  • 6 authors
·
Feb 15

Security Attacks on LLM-based Code Completion Tools

The rapid development of large language models (LLMs) has significantly advanced code completion capabilities, giving rise to a new generation of LLM-based Code Completion Tools (LCCTs). Unlike general-purpose LLMs, these tools possess unique workflows, integrating multiple information sources as input and prioritizing code suggestions over natural language interaction, which introduces distinct security challenges. Additionally, LCCTs often rely on proprietary code datasets for training, raising concerns about the potential exposure of sensitive data. This paper exploits these distinct characteristics of LCCTs to develop targeted attack methodologies on two critical security risks: jailbreaking and training data extraction attacks. Our experimental results expose significant vulnerabilities within LCCTs, including a 99.4% success rate in jailbreaking attacks on GitHub Copilot and a 46.3% success rate on Amazon Q. Furthermore, We successfully extracted sensitive user data from GitHub Copilot, including 54 real email addresses and 314 physical addresses associated with GitHub usernames. Our study also demonstrates that these code-based attack methods are effective against general-purpose LLMs, such as the GPT series, highlighting a broader security misalignment in the handling of code by modern LLMs. These findings underscore critical security challenges associated with LCCTs and suggest essential directions for strengthening their security frameworks. The example code and attack samples from our research are provided at https://github.com/Sensente/Security-Attacks-on-LCCTs.

  • 4 authors
·
Aug 20, 2024

Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming

While large language models (LLMs) have recently demonstrated strong potential in solving planning problems, there is a trade-off between flexibility and complexity. LLMs, as zero-shot planners themselves, are still not capable of directly generating valid plans for complex planning problems such as multi-constraint or long-horizon tasks. On the other hand, many frameworks aiming to solve complex planning problems often rely on task-specific preparatory efforts, such as task-specific in-context examples and pre-defined critics/verifiers, which limits their cross-task generalization capability. In this paper, we tackle these challenges by observing that the core of many planning problems lies in optimization problems: searching for the optimal solution (best plan) with goals subject to constraints (preconditions and effects of decisions). With LLMs' commonsense, reasoning, and programming capabilities, this opens up the possibilities of a universal LLM-based approach to planning problems. Inspired by this observation, we propose LLMFP, a general-purpose framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch, with no task-specific examples needed. We apply LLMFP to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LLMFP achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Sonnet, significantly outperforming the best baseline (direct planning with OpenAI o1-preview) with 37.6% and 40.7% improvements. We also validate components of LLMFP with ablation experiments and analyzed the underlying success and failure reasons.

  • 3 authors
·
Oct 15, 2024

Flooding Spread of Manipulated Knowledge in LLM-Based Multi-Agent Communities

The rapid adoption of large language models (LLMs) in multi-agent systems has highlighted their impressive capabilities in various applications, such as collaborative problem-solving and autonomous negotiation. However, the security implications of these LLM-based multi-agent systems have not been thoroughly investigated, particularly concerning the spread of manipulated knowledge. In this paper, we investigate this critical issue by constructing a detailed threat model and a comprehensive simulation environment that mirrors real-world multi-agent deployments in a trusted platform. Subsequently, we propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection to systematically explore the potential for manipulated knowledge (i.e., counterfactual and toxic knowledge) spread without explicit prompt manipulation. Our method leverages the inherent vulnerabilities of LLMs in handling world knowledge, which can be exploited by attackers to unconsciously spread fabricated information. Through extensive experiments, we demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge without degrading their foundational capabilities during agent communication. Furthermore, we show that these manipulations can persist through popular retrieval-augmented generation frameworks, where several benign agents store and retrieve manipulated chat histories for future interactions. This persistence indicates that even after the interaction has ended, the benign agents may continue to be influenced by manipulated knowledge. Our findings reveal significant security risks in LLM-based multi-agent systems, emphasizing the imperative need for robust defenses against manipulated knowledge spread, such as introducing ``guardian'' agents and advanced fact-checking tools.

  • 10 authors
·
Jul 10, 2024

Leveraging Graph-RAG and Prompt Engineering to Enhance LLM-Based Automated Requirement Traceability and Compliance Checks

Ensuring that Software Requirements Specifications (SRS) align with higher-level organizational or national requirements is vital, particularly in regulated environments such as finance and aerospace. In these domains, maintaining consistency, adhering to regulatory frameworks, minimizing errors, and meeting critical expectations are essential for the reliable functioning of systems. The widespread adoption of large language models (LLMs) highlights their immense potential, yet there remains considerable scope for improvement in retrieving relevant information and enhancing reasoning capabilities. This study demonstrates that integrating a robust Graph-RAG framework with advanced prompt engineering techniques, such as Chain of Thought and Tree of Thought, can significantly enhance performance. Compared to baseline RAG methods and simple prompting strategies, this approach delivers more accurate and context-aware results. While this method demonstrates significant improvements in performance, it comes with challenges. It is both costly and more complex to implement across diverse contexts, requiring careful adaptation to specific scenarios. Additionally, its effectiveness heavily relies on having complete and accurate input data, which may not always be readily available, posing further limitations to its scalability and practicality.

  • 5 authors
·
Dec 11, 2024

Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with Domain Hybrid Data

Augmenting Large Language Models (LLMs) for Question Answering (QA) with domain specific data has attracted wide attention. However, domain data often exists in a hybrid format, including text and semi-structured tables, posing challenges for the seamless integration of information. Table-to-Text Generation is a promising solution by facilitating the transformation of hybrid data into a uniformly text-formatted corpus. Although this technique has been widely studied by the NLP community, there is currently no comparative analysis on how corpora generated by different table-to-text methods affect the performance of QA systems. In this paper, we address this research gap in two steps. First, we innovatively integrate table-to-text generation into the framework of enhancing LLM-based QA systems with domain hybrid data. Then, we utilize this framework in real-world industrial data to conduct extensive experiments on two types of QA systems (DSFT and RAG frameworks) with four representative methods: Markdown format, Template serialization, TPLM-based method, and LLM-based method. Based on the experimental results, we draw some empirical findings and explore the underlying reasons behind the success of some methods. We hope the findings of this work will provide a valuable reference for the academic and industrial communities in developing robust QA systems.

  • 11 authors
·
Feb 20, 2024

AgentRouter: A Knowledge-Graph-Guided LLM Router for Collaborative Multi-Agent Question Answering

Large language models (LLMs) and agent-based frameworks have advanced rapidly, enabling diverse applications. Yet, with the proliferation of models and agentic strategies, practitioners face substantial uncertainty in selecting the best configuration for a downstream task. Prior studies show that different agents and backbones exhibit complementary strengths, and that larger models are not always superior, underscoring the need for adaptive routing mechanisms. Existing approaches to agent routing, however, often emphasize cost efficiency while overlooking the fine-grained contextual and relational structure inherent in QA tasks. In this paper, we propose tAgentRouter, a framework that formulates multi-agent QA as a knowledge-graph-guided routing problem supervised by empirical performance signals. Specifically, we convert QA instance into a knowledge graph that jointly encodes queries, contextual entities, and agents, and then train a heterogeneous graph neural network (GNN) to propagate information across node types and produce task-aware routing distributions over agents. By leveraging soft supervision and weighted aggregation of agent outputs, AgentRouter learns principled collaboration schemes that capture the complementary strengths of diverse agents. Extensive experiments demonstrate that our framework consistently outperforms single-agent and ensemble baselines, while generalizing across benchmarks and LLM backbones. These results highlight the effectiveness and robustness of graph-supervised multi-agent routing for question answering.

  • 9 authors
·
Oct 6

Towards Understanding Bugs in Distributed Training and Inference Frameworks for Large Language Models

With the rapid development of large language models (LLMs), distributed training and inference frameworks like DeepSpeed have become essential for scaling model training and inference across multiple GPUs or nodes. However, the increasing complexity of these frameworks brings non-trivial software bugs, which may degrade training performance, cause unexpected failures, and result in significant resource waste. Understanding framework bugs' characteristics is fundamental for quality assurance, allowing the design of more effective debugging and repair methods. Thus, our paper conducts the first large-scale empirical analysis of 308 fixed bugs across three popular distributed training/inference frameworks: DeepSpeed, Megatron-LM, and Colossal-AI. We examine bug symptoms, root causes, bug identification and fixing efforts, and common low-effort fixing strategies. Additionally, the distributed nature of these frameworks introduces unique bug root causes, such as allocation strategy error and distributed communication error. Diagnosing and fixing complex bugs remains challenging due to factors like the disconnect between symptoms and root causes, high bug reproduction costs, and low-level or cross-component interactions. Interestingly, we observe that 48% of bug fixes require minimal code changes (<=10 LOC) and follow simple strategies such as conditional logic optimization, parameter handling enhancement, or version compatibility handling, indicating potential for automation. Based on these insights, we offer several implications for improving the reliability of both distributed training and inference frameworks and their dependent LLM projects, while also identifying opportunities to leverage LLM-based tools for automated debugging and repair.

  • 6 authors
·
Jun 12 1

WHEN TO ACT, WHEN TO WAIT: Modeling Structural Trajectories for Intent Triggerability in Task-Oriented Dialogue

Task-oriented dialogue systems often face difficulties when user utterances seem semantically complete but lack necessary structural information for appropriate system action. This arises because users frequently do not fully understand their own needs, while systems require precise intent definitions. Current LLM-based agents cannot effectively distinguish between linguistically complete and contextually triggerable expressions, lacking frameworks for collaborative intent formation. We present STORM, a framework modeling asymmetric information dynamics through conversations between UserLLM (full internal access) and AgentLLM (observable behavior only). STORM produces annotated corpora capturing expression trajectories and latent cognitive transitions, enabling systematic analysis of collaborative understanding development. Our contributions include: (1) formalizing asymmetric information processing in dialogue systems; (2) modeling intent formation tracking collaborative understanding evolution; and (3) evaluation metrics measuring internal cognitive improvements alongside task performance. Experiments across four language models reveal that moderate uncertainty (40-60%) can outperform complete transparency in certain scenarios, with model-specific patterns suggesting reconsideration of optimal information completeness in human-AI collaboration. These findings contribute to understanding asymmetric reasoning dynamics and inform uncertainty-calibrated dialogue system design.

  • 8 authors
·
Jun 2 2

Zep: A Temporal Knowledge Graph Architecture for Agent Memory

We introduce Zep, a novel memory layer service for AI agents that outperforms the current state-of-the-art system, MemGPT, in the Deep Memory Retrieval (DMR) benchmark. Additionally, Zep excels in more comprehensive and challenging evaluations than DMR that better reflect real-world enterprise use cases. While existing retrieval-augmented generation (RAG) frameworks for large language model (LLM)-based agents are limited to static document retrieval, enterprise applications demand dynamic knowledge integration from diverse sources including ongoing conversations and business data. Zep addresses this fundamental limitation through its core component Graphiti -- a temporally-aware knowledge graph engine that dynamically synthesizes both unstructured conversational data and structured business data while maintaining historical relationships. In the DMR benchmark, which the MemGPT team established as their primary evaluation metric, Zep demonstrates superior performance (94.8% vs 93.4%). Beyond DMR, Zep's capabilities are further validated through the more challenging LongMemEval benchmark, which better reflects enterprise use cases through complex temporal reasoning tasks. In this evaluation, Zep achieves substantial results with accuracy improvements of up to 18.5% while simultaneously reducing response latency by 90% compared to baseline implementations. These results are particularly pronounced in enterprise-critical tasks such as cross-session information synthesis and long-term context maintenance, demonstrating Zep's effectiveness for deployment in real-world applications.

  • 5 authors
·
Jan 20

Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System

The autonomous AI agents using large language models can create undeniable values in all span of the society but they face security threats from adversaries that warrants immediate protective solutions because trust and safety issues arise. Considering the many-shot jailbreaking and deceptive alignment as some of the main advanced attacks, that cannot be mitigated by the static guardrails used during the supervised training, points out a crucial research priority for real world robustness. The combination of static guardrails in dynamic multi-agent system fails to defend against those attacks. We intend to enhance security for LLM-based agents through the development of new evaluation frameworks which identify and counter threats for safe operational deployment. Our work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations and develops an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models using tool-mediated adversarial scenarios. The detection capabilities are strong such as 94\% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks as prompt length increases attack success rates (ASR) and diversity metrics become ineffective in prediction while revealing multiple complex system faults. The findings demonstrate the necessity of adopting flexible security systems based on active monitoring that can be performed by the agents themselves together with adaptable interventions by system admin as the current models can create vulnerabilities that can lead to the unreliable and vulnerable system. So, in our work, we try to address such situations and propose a comprehensive framework to counteract the security issues.

  • 6 authors
·
Feb 23 2

GenUP: Generative User Profilers as In-Context Learners for Next POI Recommender Systems

Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP.

  • 3 authors
·
Oct 27, 2024

ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning

Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs' powerful generative abilities for learning passage embeddings. To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile.

  • 4 authors
·
Aug 6, 2024

SuffixDecoding: Extreme Speculative Decoding for Emerging AI Applications

Speculative decoding is widely adopted to reduce latency in large language model (LLM) inference by leveraging smaller draft models capable of handling diverse user tasks. However, emerging AI applications, such as LLM-based agents, present unique workload characteristics: instead of diverse independent requests, agentic frameworks typically submit repetitive inference requests, such as multi-agent pipelines performing similar subtasks or self-refinement loops iteratively enhancing outputs. These workloads result in long and highly predictable sequences, which current speculative decoding methods do not effectively exploit. To address this gap, we introduce SuffixDecoding, a novel method that utilizes efficient suffix trees to cache long token sequences from prompts and previous outputs. By adaptively speculating more tokens when acceptance likelihood is high and fewer when it is low, SuffixDecoding effectively exploits opportunities for longer speculations while conserving computation when those opportunities are limited. Evaluations on agentic benchmarks, including SWE-Bench and Text-to-SQL, demonstrate that SuffixDecoding achieves speedups of up to 5.3times, outperforming state-of-the-art methods -- 2.8times faster than model-based approaches like EAGLE-2/3 and 1.9times faster than model-free approaches such as Token Recycling. SuffixDecoding is open-sourced at https://github.com/snowflakedb/ArcticInference

  • 4 authors
·
Nov 7, 2024

Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs

Evaluating machine-generated text remains a significant challenge in NLP, especially for non-English languages. Current methodologies, including automated metrics, human assessments, and LLM-based evaluations, predominantly focus on English, revealing a significant gap in multilingual evaluation frameworks. We introduce the Cross Lingual Auto Evaluation (CIA) Suite, an extensible framework that includes evaluator LLMs (Hercule) and a novel test set (Recon) specifically designed for multilingual evaluation. Our test set features 500 human-annotated instructions spanning various task capabilities along with human judgment scores across six languages. This would enable benchmarking of general-purpose multilingual LLMs and facilitate meta-evaluation of Evaluator LLMs. The proposed model, Hercule, is a cross-lingual evaluation model that addresses the scarcity of reference answers in the target language by learning to assign scores to responses based on easily available reference answers in English. Our experiments demonstrate that Hercule aligns more closely with human judgments compared to proprietary models, demonstrating the effectiveness of such cross-lingual evaluation in low resource scenarios. Further, it is also effective in zero-shot evaluation on unseen languages. This study is the first comprehensive examination of cross-lingual evaluation using LLMs, presenting a scalable and effective approach for multilingual assessment. All code, datasets, and models will be publicly available to enable further research in this important area.

  • 6 authors
·
Oct 17, 2024 2

D$^{2}$MoE: Dual Routing and Dynamic Scheduling for Efficient On-Device MoE-based LLM Serving

The mixture of experts (MoE) model is a sparse variant of large language models (LLMs), designed to hold a better balance between intelligent capability and computational overhead. Despite its benefits, MoE is still too expensive to deploy on resource-constrained edge devices, especially with the demands of on-device inference services. Recent research efforts often apply model compression techniques, such as quantization, pruning and merging, to restrict MoE complexity. Unfortunately, due to their predefined static model optimization strategies, they cannot always achieve the desired quality-overhead trade-off when handling multiple requests, finally degrading the on-device quality of service. These limitations motivate us to propose the D^2MoE, an algorithm-system co-design framework that matches diverse task requirements by dynamically allocating the most proper bit-width to each expert. Specifically, inspired by the nested structure of matryoshka dolls, we propose the matryoshka weight quantization (MWQ) to progressively compress expert weights in a bit-nested manner and reduce the required runtime memory. On top of it, we further optimize the I/O-computation pipeline and design a heuristic scheduling algorithm following our hottest-expert-bit-first (HEBF) principle, which maximizes the expert parallelism between I/O and computation queue under constrained memory budgets, thus significantly reducing the idle temporal bubbles waiting for the experts to load. Evaluations on real edge devices show that D^2MoE improves the overall inference throughput by up to 1.39times and reduces the peak memory footprint by up to 53% over the latest on-device inference frameworks, while still preserving comparable serving accuracy as its INT8 counterparts.

  • 4 authors
·
Apr 17

From Words to Collisions: LLM-Guided Evaluation and Adversarial Generation of Safety-Critical Driving Scenarios

Ensuring the safety of autonomous vehicles requires virtual scenario-based testing, which depends on the robust evaluation and generation of safety-critical scenarios. So far, researchers have used scenario-based testing frameworks that rely heavily on handcrafted scenarios as safety metrics. To reduce the effort of human interpretation and overcome the limited scalability of these approaches, we combine Large Language Models (LLMs) with structured scenario parsing and prompt engineering to automatically evaluate and generate safety-critical driving scenarios. We introduce Cartesian and Ego-centric prompt strategies for scenario evaluation, and an adversarial generation module that modifies trajectories of risk-inducing vehicles (ego-attackers) to create critical scenarios. We validate our approach using a 2D simulation framework and multiple pre-trained LLMs. The results show that the evaluation module effectively detects collision scenarios and infers scenario safety. Meanwhile, the new generation module identifies high-risk agents and synthesizes realistic, safety-critical scenarios. We conclude that an LLM equipped with domain-informed prompting techniques can effectively evaluate and generate safety-critical driving scenarios, reducing dependence on handcrafted metrics. We release our open-source code and scenarios at: https://github.com/TUM-AVS/From-Words-to-Collisions.

  • 5 authors
·
Feb 4 1

Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks

Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.

  • 2 authors
·
Jun 20, 2024

FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration

We present FireRedASR, a family of large-scale automatic speech recognition (ASR) models for Mandarin, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. FireRedASR comprises two variants: FireRedASR-LLM: Designed to achieve state-of-the-art (SOTA) performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities. On public Mandarin benchmarks, FireRedASR-LLM (8.3B parameters) achieves an average Character Error Rate (CER) of 3.05%, surpassing the latest SOTA of 3.33% with an 8.4% relative CER reduction (CERR). It demonstrates superior generalization capability over industrial-grade baselines, achieving 24%-40% CERR in multi-source Mandarin ASR scenarios such as video, live, and intelligent assistant. FireRedASR-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture. On public Mandarin benchmarks, FireRedASR-AED (1.1B parameters) achieves an average CER of 3.18%, slightly worse than FireRedASR-LLM but still outperforming the latest SOTA model with over 12B parameters. It offers a more compact size, making it suitable for resource-constrained applications. Moreover, both models exhibit competitive results on Chinese dialects and English speech benchmarks and excel in singing lyrics recognition. To advance research in speech processing, we release our models and inference code at https://github.com/FireRedTeam/FireRedASR.

  • 4 authors
·
Jan 24

Web-Bench: A LLM Code Benchmark Based on Web Standards and Frameworks

The application of large language models (LLMs) in the field of coding is evolving rapidly: from code assistants, to autonomous coding agents, and then to generating complete projects through natural language. Early LLM code benchmarks primarily focused on code generation accuracy, but these benchmarks have gradually become saturated. Benchmark saturation weakens their guiding role for LLMs. For example, HumanEval Pass@1 has reached 99.4% and MBPP 94.2%. Among various attempts to address benchmark saturation, approaches based on software engineering have stood out, but the saturation of existing software engineering benchmarks is rapidly increasing. To address this, we propose a new benchmark, Web-Bench, which contains 50 projects, each consisting of 20 tasks with sequential dependencies. The tasks implement project features in sequence, simulating real-world human development workflows. When designing Web-Bench, we aim to cover the foundational elements of Web development: Web Standards and Web Frameworks. Given the scale and complexity of these projects, which were designed by engineers with 5 to 10 years of experience, each presents a significant challenge. On average, a single project takes 4 to 8 hours for a senior engineer to complete. On our given benchmark agent (Web-Agent), SOTA (Claude 3.7 Sonnet) achieves only 25.1% Pass@1, significantly lower (better) than SWE-Bench's Verified (65.4%) and Full (33.8%) scores. Finally, we discuss that in any development field, Standards and Frameworks represent foundational knowledge and efficiency tools, respectively, and LLMs require optimization tailored to them.

  • 4 authors
·
May 12 1

Random Policy Valuation is Enough for LLM Reasoning with Verifiable Rewards

RL with Verifiable Rewards (RLVR) has emerged as a promising paradigm for improving the reasoning abilities of large language models (LLMs). Current methods rely primarily on policy optimization frameworks like PPO and GRPO, which follow generalized policy iteration that alternates between evaluating the current policy's value and improving the policy based on evaluation. While effective, they often suffer from training instability and diversity collapse, requiring complex heuristic tricks and careful tuning. We observe that standard RLVR in math reasoning can be formalized as a specialized finite-horizon Markov Decision Process with deterministic state transitions, tree-structured dynamics, and binary terminal rewards. Though large in scale, the underlying structure is simpler than general-purpose control settings for which popular RL algorithms (e.g., PPO) were developed, suggesting that several sophisticated techniques in existing methods may be reduced or even omitted. Based on this insight, we prove a surprising result: the optimal action can be recovered from the Q-function of a fixed uniformly random policy, thereby bypassing the generalized policy iteration loop and its associated heuristics. We introduce Random Policy Valuation for Diverse Reasoning (ROVER) to translate this principle into a practical and scalable algorithm for LLM math reasoning, a minimalist yet highly effective RL method that samples actions from a softmax over these uniform-policy Q-values. ROVER preserves diversity throughout training, allowing sustained exploration of multiple valid pathways. Across multiple base models and standard math reasoning benchmarks, ROVER demonstrates superior performance in both quality (+8.2 on pass@1, +16.8 on pass@256) and diversity (+17.6\%), despite its radical simplification compared to strong, complicated existing methods.

  • 7 authors
·
Sep 29 1

L^2M^3OF: A Large Language Multimodal Model for Metal-Organic Frameworks

Large language models have demonstrated remarkable reasoning capabilities across diverse natural language tasks. However, comparable breakthroughs in scientific discovery are more limited, because understanding complex physical phenomena demands multifaceted representations far beyond language alone. A compelling example is the design of functional materials such as MOFs-critical for a range of impactful applications like carbon capture and hydrogen storage. Navigating their vast and intricate design space in language-based representations interpretable by LLMs is challenging due to the numerous possible three-dimensional atomic arrangements and strict reticular rules of coordination geometry and topology. Despite promising early results in LLM-assisted discovery for simpler materials systems, MOF design remains heavily reliant on tacit human expertise rarely codified in textual information alone. To overcome this barrier, we introduce L2M3OF, the first multimodal LLM for MOFs. L2M3OF integrates crystal representation learning with language understanding to process structural, textual, and knowledge modalities jointly. L2M3OF employs a pre-trained crystal encoder with a lightweight projection layer to compress structural information into a token space, enabling efficient alignment with language instructions. To facilitate training and evaluation, we curate a structure-property-knowledge database of crystalline materials and benchmark L2M3OF against state-of-the-art closed-source LLMs such as GPT-5, Gemini-2.5-Pro and DeepSeek-R1. Experiments show that L2M3OF outperforms leading text-based closed-source LLMs in property prediction and knowledge generation tasks, despite using far fewer parameters. These results highlight the importance of multimodal approaches for porous material understanding and establish L2M3OF as a foundation for next-generation AI systems in materials discovery.

  • 7 authors
·
Oct 23 2

Large Language Models Meet Text-Attributed Graphs: A Survey of Integration Frameworks and Applications

Large Language Models (LLMs) have achieved remarkable success in natural language processing through strong semantic understanding and generation. However, their black-box nature limits structured and multi-hop reasoning. In contrast, Text-Attributed Graphs (TAGs) provide explicit relational structures enriched with textual context, yet often lack semantic depth. Recent research shows that combining LLMs and TAGs yields complementary benefits: enhancing TAG representation learning and improving the reasoning and interpretability of LLMs. This survey provides the first systematic review of LLM--TAG integration from an orchestration perspective. We introduce a novel taxonomy covering two fundamental directions: LLM for TAG, where LLMs enrich graph-based tasks, and TAG for LLM, where structured graphs improve LLM reasoning. We categorize orchestration strategies into sequential, parallel, and multi-module frameworks, and discuss advances in TAG-specific pretraining, prompting, and parameter-efficient fine-tuning. Beyond methodology, we summarize empirical insights, curate available datasets, and highlight diverse applications across recommendation systems, biomedical analysis, and knowledge-intensive question answering. Finally, we outline open challenges and promising research directions, aiming to guide future work at the intersection of language and graph learning.

  • 6 authors
·
Oct 23

SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents

With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench-the first benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10\% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. More details and code are available at https://github.com/shengyin1224/SafeAgentBench.

  • 10 authors
·
Dec 17, 2024

Demystifying RCE Vulnerabilities in LLM-Integrated Apps

LLMs show promise in transforming software development, with a growing interest in integrating them into more intelligent apps. Frameworks like LangChain aid LLM-integrated app development, offering code execution utility/APIs for custom actions. However, these capabilities theoretically introduce Remote Code Execution (RCE) vulnerabilities, enabling remote code execution through prompt injections. No prior research systematically investigates these frameworks' RCE vulnerabilities or their impact on applications and exploitation consequences. Therefore, there is a huge research gap in this field. In this study, we propose LLMSmith to detect, validate and exploit the RCE vulnerabilities in LLM-integrated frameworks and apps. To achieve this goal, we develop two novel techniques, including 1) a lightweight static analysis to examine LLM integration mechanisms, and construct call chains to identify RCE vulnerabilities in frameworks; 2) a systematical prompt-based exploitation method to verify and exploit the found vulnerabilities in LLM-integrated apps. This technique involves various strategies to control LLM outputs, trigger RCE vulnerabilities and launch subsequent attacks. Our research has uncovered a total of 20 vulnerabilities in 11 LLM-integrated frameworks, comprising 19 RCE vulnerabilities and 1 arbitrary file read/write vulnerability. Of these, 17 have been confirmed by the framework developers, with 11 vulnerabilities being assigned CVE IDs. For the 51 apps potentially affected by RCE, we successfully executed attacks on 17 apps, 16 of which are vulnerable to RCE and 1 to SQL injection. Furthermore, we conduct a comprehensive analysis of these vulnerabilities and construct practical attacks to demonstrate the hazards in reality. Last, we propose several mitigation measures for both framework and app developers to counteract such attacks.

  • 5 authors
·
Sep 6, 2023

RAGalyst: Automated Human-Aligned Agentic Evaluation for Domain-Specific RAG

Retrieval-Augmented Generation (RAG) is a critical technique for grounding Large Language Models (LLMs) in factual evidence, yet evaluating RAG systems in specialized, safety-critical domains remains a significant challenge. Existing evaluation frameworks often rely on heuristic-based metrics that fail to capture domain-specific nuances and other works utilize LLM-as-a-Judge approaches that lack validated alignment with human judgment. This paper introduces RAGalyst, an automated, human-aligned agentic framework designed for the rigorous evaluation of domain-specific RAG systems. RAGalyst features an agentic pipeline that generates high-quality, synthetic question-answering (QA) datasets from source documents, incorporating an agentic filtering step to ensure data fidelity. The framework refines two key LLM-as-a-Judge metrics-Answer Correctness and Answerability-using prompt optimization to achieve a strong correlation with human annotations. Applying this framework to evaluate various RAG components across three distinct domains (military operations, cybersecurity, and bridge engineering), we find that performance is highly context-dependent. No single embedding model, LLM, or hyperparameter configuration proves universally optimal. Additionally, we provide an analysis on the most common low Answer Correctness reasons in RAG. These findings highlight the necessity of a systematic evaluation framework like RAGalyst, which empowers practitioners to uncover domain-specific trade-offs and make informed design choices for building reliable and effective RAG systems. RAGalyst is available on our Github.

  • 5 authors
·
Nov 6

QuantAgent: Price-Driven Multi-Agent LLMs for High-Frequency Trading

Recent advances in Large Language Models (LLMs) have demonstrated impressive capabilities in financial reasoning and market understanding. Multi-agent LLM frameworks such as TradingAgent and FINMEM augment these models to long-horizon investment tasks, leveraging fundamental and sentiment-based inputs for strategic decision-making. However, such systems are ill-suited for the high-speed, precision-critical demands of High-Frequency Trading (HFT). HFT requires rapid, risk-aware decisions based on structured, short-horizon signals, including technical indicators, chart patterns, and trend-based features, distinct from the long-term semantic reasoning typical of traditional financial LLM applications. To this end, we introduce QuantAgent, the first multi-agent LLM framework explicitly designed for high-frequency algorithmic trading. The system decomposes trading into four specialized agents, Indicator, Pattern, Trend, and Risk, each equipped with domain-specific tools and structured reasoning capabilities to capture distinct aspects of market dynamics over short temporal windows. In zero-shot evaluations across ten financial instruments, including Bitcoin and Nasdaq futures, QuantAgent demonstrates superior performance in both predictive accuracy and cumulative return over 4-hour trading intervals, outperforming strong neural and rule-based baselines. Our findings suggest that combining structured financial priors with language-native reasoning unlocks new potential for traceable, real-time decision systems in high-frequency financial markets.

  • 5 authors
·
Sep 12 3

PoAct: Policy and Action Dual-Control Agent for Generalized Applications

Based on their superior comprehension and reasoning capabilities, Large Language Model (LLM) driven agent frameworks have achieved significant success in numerous complex reasoning tasks. ReAct-like agents can solve various intricate problems step-by-step through progressive planning and tool calls, iteratively optimizing new steps based on environmental feedback. However, as the planning capabilities of LLMs improve, the actions invoked by tool calls in ReAct-like frameworks often misalign with complex planning and challenging data organization. Code Action addresses these issues while also introducing the challenges of a more complex action space and more difficult action organization. To leverage Code Action and tackle the challenges of its complexity, this paper proposes Policy and Action Dual-Control Agent (PoAct) for generalized applications. The aim is to achieve higher-quality code actions and more accurate reasoning paths by dynamically switching reasoning policies and modifying the action space. Experimental results on the Agent Benchmark for both legal and generic scenarios demonstrate the superior reasoning capabilities and reduced token consumption of our approach in complex tasks. On the LegalAgentBench, our method shows a 20 percent improvement over the baseline while requiring fewer tokens. We conducted experiments and analyses on the GPT-4o and GLM-4 series models, demonstrating the significant potential and scalability of our approach to solve complex problems.

  • 9 authors
·
Jan 12

CP-Bench: Evaluating Large Language Models for Constraint Modelling

Combinatorial problems are present in a wide range of industries. Constraint Programming (CP) is a well-suited problem-solving paradigm, but its core process, namely constraint modelling, is a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) as modelling assistants, transforming combinatorial problem descriptions to executable constraint models, similar to coding assistants. However, the existing evaluation datasets for constraint modelling are often limited to small, homogeneous, or domain-specific instances, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing CP-Bench, a novel benchmark dataset that includes a diverse set of well-known combinatorial problem classes sourced from the CP community, structured explicitly for evaluating LLM-driven CP modelling. With this dataset, and given the variety of constraint modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax: the high-level MiniZinc language and Python-based CPMpy library, and the lower-level Python interface of the OR-Tools CP-SAT solver. In order to enhance the ability of LLMs to produce valid constraint models, we systematically evaluate the use of prompt-based and inference-time compute methods adapted from existing LLM-based code generation research. Our results underscore the modelling convenience provided by Python-based frameworks, as well as the effectiveness of documentation-rich system prompts, which, augmented with repeated sampling and self-verification, achieve further improvements, reaching up to 70\% accuracy on this new, highly challenging benchmark.

  • 3 authors
·
Jun 6

Achieving Peak Performance for Large Language Models: A Systematic Review

In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.

  • 3 authors
·
Sep 7, 2024

FIRESPARQL: A LLM-based Framework for SPARQL Query Generation over Scholarly Knowledge Graphs

Question answering over Scholarly Knowledge Graphs (SKGs) remains a challenging task due to the complexity of scholarly content and the intricate structure of these graphs. Large Language Model (LLM) approaches could be used to translate natural language questions (NLQs) into SPARQL queries; however, these LLM-based approaches struggle with SPARQL query generation due to limited exposure to SKG-specific content and the underlying schema. We identified two main types of errors in the LLM-generated SPARQL queries: (i) structural inconsistencies, such as missing or redundant triples in the queries, and (ii) semantic inaccuracies, where incorrect entities or properties are shown in the queries despite a correct query structure. To address these issues, we propose FIRESPARQL, a modular framework that supports fine-tuned LLMs as a core component, with optional context provided via retrieval-augmented generation (RAG) and a SPARQL query correction layer. We evaluate the framework on the SciQA Benchmark using various configurations (zero-shot, zero-shot with RAG, one-shot, fine-tuning, and fine-tuning with RAG) and compare the performance with baseline and state-of-the-art approaches. We measure query accuracy using BLEU and ROUGE metrics, and query result accuracy using relaxed exact match(RelaxedEM), with respect to the gold standards containing the NLQs, SPARQL queries, and the results of the queries. Experimental results demonstrate that fine-tuning achieves the highest overall performance, reaching 0.90 ROUGE-L for query accuracy and 0.85 RelaxedEM for result accuracy on the test set.

  • 3 authors
·
Aug 14

SurveyG: A Multi-Agent LLM Framework with Hierarchical Citation Graph for Automated Survey Generation

Large language models (LLMs) are increasingly adopted for automating survey paper generation wang2406autosurvey, liang2025surveyx, yan2025surveyforge,su2025benchmarking,wen2025interactivesurvey. Existing approaches typically extract content from a large collection of related papers and prompt LLMs to summarize them directly. However, such methods often overlook the structural relationships among papers, resulting in generated surveys that lack a coherent taxonomy and a deeper contextual understanding of research progress. To address these shortcomings, we propose SurveyG, an LLM-based agent framework that integrates hierarchical citation graph, where nodes denote research papers and edges capture both citation dependencies and semantic relatedness between their contents, thereby embedding structural and contextual knowledge into the survey generation process. The graph is organized into three layers: Foundation, Development, and Frontier, to capture the evolution of research from seminal works to incremental advances and emerging directions. By combining horizontal search within layers and vertical depth traversal across layers, the agent produces multi-level summaries, which are consolidated into a structured survey outline. A multi-agent validation stage then ensures consistency, coverage, and factual accuracy in generating the final survey. Experiments, including evaluations by human experts and LLM-as-a-judge, demonstrate that SurveyG outperforms state-of-the-art frameworks, producing surveys that are more comprehensive and better structured to the underlying knowledge taxonomy of a field.

  • 6 authors
·
Oct 8

AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems

The rapid advancement of large language models (LLMs) has enabled the development of multi-agent systems where multiple LLM-based agents collaborate on complex tasks. However, existing systems often rely on centralized coordination, leading to scalability bottlenecks, reduced adaptability, and single points of failure. Privacy and proprietary knowledge concerns further hinder cross-organizational collaboration, resulting in siloed expertise. We propose AgentNet, a decentralized, Retrieval-Augmented Generation (RAG)-based framework that enables LLM-based agents to specialize, evolve, and collaborate autonomously in a dynamically structured Directed Acyclic Graph (DAG). Unlike prior approaches with static roles or centralized control, AgentNet allows agents to adjust connectivity and route tasks based on local expertise and context. AgentNet introduces three key innovations: (1) a fully decentralized coordination mechanism that eliminates the need for a central orchestrator, enhancing robustness and emergent intelligence; (2) dynamic agent graph topology that adapts in real time to task demands, ensuring scalability and resilience; and (3) a retrieval-based memory system for agents that supports continual skill refinement and specialization. By minimizing centralized control and data exchange, AgentNet enables fault-tolerant, privacy-preserving collaboration across organizations. Experiments show that AgentNet achieves higher task accuracy than both single-agent and centralized multi-agent baselines.

  • 7 authors
·
Apr 1

Navigating the Alpha Jungle: An LLM-Powered MCTS Framework for Formulaic Factor Mining

Alpha factor mining is pivotal in quantitative investment for identifying predictive signals from complex financial data. While traditional formulaic alpha mining relies on human expertise, contemporary automated methods, such as those based on genetic programming or reinforcement learning, often struggle with search inefficiency or yield alpha factors that are difficult to interpret. This paper introduces a novel framework that integrates Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS) to overcome these limitations. Our framework leverages the LLM's instruction-following and reasoning capability to iteratively generate and refine symbolic alpha formulas within an MCTS-driven exploration. A key innovation is the guidance of MCTS exploration by rich, quantitative feedback from financial backtesting of each candidate factor, enabling efficient navigation of the vast search space. Furthermore, a frequent subtree avoidance mechanism is introduced to enhance search diversity and prevent formulaic homogenization, further improving performance. Experimental results on real-world stock market data demonstrate that our LLM-based framework outperforms existing methods by mining alphas with superior predictive accuracy and trading performance. The resulting formulas are also more amenable to human interpretation, establishing a more effective and efficient paradigm for formulaic alpha mining.

  • 3 authors
·
May 16

ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features

In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph

  • 3 authors
·
Aug 19

Agent Laboratory: Using LLM Agents as Research Assistants

Historically, scientific discovery has been a lengthy and costly process, demanding substantial time and resources from initial conception to final results. To accelerate scientific discovery, reduce research costs, and improve research quality, we introduce Agent Laboratory, an autonomous LLM-based framework capable of completing the entire research process. This framework accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing to produce comprehensive research outputs, including a code repository and a research report, while enabling users to provide feedback and guidance at each stage. We deploy Agent Laboratory with various state-of-the-art LLMs and invite multiple researchers to assess its quality by participating in a survey, providing human feedback to guide the research process, and then evaluate the final paper. We found that: (1) Agent Laboratory driven by o1-preview generates the best research outcomes; (2) The generated machine learning code is able to achieve state-of-the-art performance compared to existing methods; (3) Human involvement, providing feedback at each stage, significantly improves the overall quality of research; (4) Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods. We hope Agent Laboratory enables researchers to allocate more effort toward creative ideation rather than low-level coding and writing, ultimately accelerating scientific discovery.

Advancing Autonomous Vehicle Intelligence: Deep Learning and Multimodal LLM for Traffic Sign Recognition and Robust Lane Detection

Autonomous vehicles (AVs) require reliable traffic sign recognition and robust lane detection capabilities to ensure safe navigation in complex and dynamic environments. This paper introduces an integrated approach combining advanced deep learning techniques and Multimodal Large Language Models (MLLMs) for comprehensive road perception. For traffic sign recognition, we systematically evaluate ResNet-50, YOLOv8, and RT-DETR, achieving state-of-the-art performance of 99.8% with ResNet-50, 98.0% accuracy with YOLOv8, and achieved 96.6% accuracy in RT-DETR despite its higher computational complexity. For lane detection, we propose a CNN-based segmentation method enhanced by polynomial curve fitting, which delivers high accuracy under favorable conditions. Furthermore, we introduce a lightweight, Multimodal, LLM-based framework that directly undergoes instruction tuning using small yet diverse datasets, eliminating the need for initial pretraining. This framework effectively handles various lane types, complex intersections, and merging zones, significantly enhancing lane detection reliability by reasoning under adverse conditions. Despite constraints in available training resources, our multimodal approach demonstrates advanced reasoning capabilities, achieving a Frame Overall Accuracy (FRM) of 53.87%, a Question Overall Accuracy (QNS) of 82.83%, lane detection accuracies of 99.6% in clear conditions and 93.0% at night, and robust performance in reasoning about lane invisibility due to rain (88.4%) or road degradation (95.6%). The proposed comprehensive framework markedly enhances AV perception reliability, thus contributing significantly to safer autonomous driving across diverse and challenging road scenarios.

  • 8 authors
·
Mar 8

VisionLLM: Large Language Model is also an Open-Ended Decoder for Vision-Centric Tasks

Large language models (LLMs) have notably accelerated progress towards artificial general intelligence (AGI), with their impressive zero-shot capacity for user-tailored tasks, endowing them with immense potential across a range of applications. However, in the field of computer vision, despite the availability of numerous powerful vision foundation models (VFMs), they are still restricted to tasks in a pre-defined form, struggling to match the open-ended task capabilities of LLMs. In this work, we present an LLM-based framework for vision-centric tasks, termed VisionLLM. This framework provides a unified perspective for vision and language tasks by treating images as a foreign language and aligning vision-centric tasks with language tasks that can be flexibly defined and managed using language instructions. An LLM-based decoder can then make appropriate predictions based on these instructions for open-ended tasks. Extensive experiments show that the proposed VisionLLM can achieve different levels of task customization through language instructions, from fine-grained object-level to coarse-grained task-level customization, all with good results. It's noteworthy that, with a generalist LLM-based framework, our model can achieve over 60\% mAP on COCO, on par with detection-specific models. We hope this model can set a new baseline for generalist vision and language models. The demo shall be released based on https://github.com/OpenGVLab/InternGPT. The code shall be released at https://github.com/OpenGVLab/VisionLLM.

  • 11 authors
·
May 18, 2023 5

Large Language Models as Data Preprocessors

Large Language Models (LLMs), typified by OpenAI's GPT series and Meta's LLaMA variants, have marked a significant advancement in artificial intelligence. Trained on vast amounts of text data, LLMs are capable of understanding and generating human-like text across a diverse range of topics. This study expands on the applications of LLMs, exploring their potential in data preprocessing, a critical stage in data mining and analytics applications. We delve into the applicability of state-of-the-art LLMs such as GPT-3.5, GPT-4, and Vicuna-13B for error detection, data imputation, schema matching, and entity matching tasks. Alongside showcasing the inherent capabilities of LLMs, we highlight their limitations, particularly in terms of computational expense and inefficiency. We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques, coupled with traditional methods like contextualization and feature selection, to improve the performance and efficiency of these models. The effectiveness of LLMs in data preprocessing is evaluated through an experimental study spanning 12 datasets. GPT-4 emerged as a standout, achieving 100\% accuracy or F1 score on 4 datasets, suggesting LLMs' immense potential in these tasks. Despite certain limitations, our study underscores the promise of LLMs in this domain and anticipates future developments to overcome current hurdles.

  • 4 authors
·
Aug 30, 2023

MesaTask: Towards Task-Driven Tabletop Scene Generation via 3D Spatial Reasoning

The ability of robots to interpret human instructions and execute manipulation tasks necessitates the availability of task-relevant tabletop scenes for training. However, traditional methods for creating these scenes rely on time-consuming manual layout design or purely randomized layouts, which are limited in terms of plausibility or alignment with the tasks. In this paper, we formulate a novel task, namely task-oriented tabletop scene generation, which poses significant challenges due to the substantial gap between high-level task instructions and the tabletop scenes. To support research on such a challenging task, we introduce MesaTask-10K, a large-scale dataset comprising approximately 10,700 synthetic tabletop scenes with manually crafted layouts that ensure realistic layouts and intricate inter-object relations. To bridge the gap between tasks and scenes, we propose a Spatial Reasoning Chain that decomposes the generation process into object inference, spatial interrelation reasoning, and scene graph construction for the final 3D layout. We present MesaTask, an LLM-based framework that utilizes this reasoning chain and is further enhanced with DPO algorithms to generate physically plausible tabletop scenes that align well with given task descriptions. Exhaustive experiments demonstrate the superior performance of MesaTask compared to baselines in generating task-conforming tabletop scenes with realistic layouts. Project page is at https://mesatask.github.io/

  • 11 authors
·
Sep 26 3

MapAgent: Trajectory-Constructed Memory-Augmented Planning for Mobile Task Automation

The recent advancement of autonomous agents powered by Large Language Models (LLMs) has demonstrated significant potential for automating tasks on mobile devices through graphical user interfaces (GUIs). Despite initial progress, these agents still face challenges when handling complex real-world tasks. These challenges arise from a lack of knowledge about real-life mobile applications in LLM-based agents, which may lead to ineffective task planning and even cause hallucinations. To address these challenges, we propose a novel LLM-based agent framework called MapAgent that leverages memory constructed from historical trajectories to augment current task planning. Specifically, we first propose a trajectory-based memory mechanism that transforms task execution trajectories into a reusable and structured page-memory database. Each page within a trajectory is extracted as a compact yet comprehensive snapshot, capturing both its UI layout and functional context. Secondly, we introduce a coarse-to-fine task planning approach that retrieves relevant pages from the memory database based on similarity and injects them into the LLM planner to compensate for potential deficiencies in understanding real-world app scenarios, thereby achieving more informed and context-aware task planning. Finally, planned tasks are transformed into executable actions through a task executor supported by a dual-LLM architecture, ensuring effective tracking of task progress. Experimental results in real-world scenarios demonstrate that MapAgent achieves superior performance to existing methods. The code will be open-sourced to support further research.

  • 7 authors
·
Jul 29

Omni-Mol: Exploring Universal Convergent Space for Omni-Molecular Tasks

Building generalist models has recently demonstrated remarkable capabilities in diverse scientific domains. Within the realm of molecular learning, several studies have explored unifying diverse tasks across diverse domains. However, negative conflicts and interference between molecules and knowledge from different domain may have a worse impact in threefold. First, conflicting molecular representations can lead to optimization difficulties for the models. Second, mixing and scaling up training data across diverse tasks is inherently challenging. Third, the computational cost of refined pretraining is prohibitively high. To address these limitations, this paper presents Omni-Mol, a scalable and unified LLM-based framework for direct instruction tuning. Omni-Mol builds on three key components to tackles conflicts: (1) a unified encoding mechanism for any task input; (2) an active-learning-driven data selection strategy that significantly reduces dataset size; (3) a novel design of the adaptive gradient stabilization module and anchor-and-reconcile MoE framework that ensures stable convergence. Experimentally, Omni-Mol achieves state-of-the-art performance across 15 molecular tasks, demonstrates the presence of scaling laws in the molecular domain, and is supported by extensive ablation studies and analyses validating the effectiveness of its design. The code and weights of the powerful AI-driven chemistry generalist are open-sourced at: https://anonymous.4open.science/r/Omni-Mol-8EDB.

  • 5 authors
·
Feb 3

Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter?

Solving grid puzzles involves a significant amount of logical reasoning. Hence, it is a good domain to evaluate the reasoning capability of a model which can then guide us to improve the reasoning ability of models. However, most existing works evaluate only the final predicted answer of a puzzle, without delving into an in-depth analysis of the LLMs' reasoning chains (such as where they falter) or providing any finer metrics to evaluate them. Since LLMs may rely on simple heuristics or artifacts to predict the final answer, it is crucial to evaluate the generated reasoning chain beyond overall correctness measures, for accurately evaluating the reasoning abilities of LLMs. To this end, we first develop GridPuzzle, an evaluation dataset comprising 274 grid-based puzzles with different complexities. Second, we propose a new error taxonomy derived from manual analysis of reasoning chains from LLMs including GPT-4, Claude-3, Gemini, Mistral, and Llama-2. Then, we develop an LLM-based framework for large-scale subjective evaluation (i.e., identifying errors) and an objective metric, PuzzleEval, to evaluate the correctness of reasoning chains. Evaluating reasoning chains from LLMs leads to several interesting findings. We further show that existing prompting methods used for enhancing models' reasoning abilities do not improve performance on GridPuzzle. This highlights the importance of understanding fine-grained errors and presents a challenge for future research to enhance LLMs' puzzle-solving abilities by developing methods that address these errors. Data and source code are available at https://github.com/Mihir3009/GridPuzzle.

  • 8 authors
·
Jul 20, 2024

DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving

Large language models (LLMs) have opened up new possibilities for intelligent agents, endowing them with human-like thinking and cognitive abilities. In this work, we delve into the potential of large language models (LLMs) in autonomous driving (AD). We introduce DriveMLM, an LLM-based AD framework that can perform close-loop autonomous driving in realistic simulators. To this end, (1) we bridge the gap between the language decisions and the vehicle control commands by standardizing the decision states according to the off-the-shelf motion planning module. (2) We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system, which uses driving rules, user commands, and inputs from various sensors (e.g., camera, lidar) as input and makes driving decisions and provide explanations; This model can plug-and-play in existing AD systems such as Apollo for close-loop driving. (3) We design an effective data engine to collect a dataset that includes decision state and corresponding explanation annotation for model training and evaluation. We conduct extensive experiments and show that our model achieves 76.1 driving score on the CARLA Town05 Long, and surpasses the Apollo baseline by 4.7 points under the same settings, demonstrating the effectiveness of our model. We hope this work can serve as a baseline for autonomous driving with LLMs. Code and models shall be released at https://github.com/OpenGVLab/DriveMLM.

  • 16 authors
·
Dec 14, 2023

L2MAC: Large Language Model Automatic Computer for Extensive Code Generation

Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.

  • 3 authors
·
Oct 2, 2023

Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data

Time-series analysis is critical for a wide range of fields such as healthcare, finance, transportation, and energy, among many others. The practical applications often involve analyzing time-series data alongside contextual information in the form of natural language to support informed decisions. However, current time-series models are limited in their ability to perform reasoning that involves both time-series and their textual content. In this work, we address this gap by introducing Chat-TS, a large language model (LLM) based framework, designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising the core natural language capabilities, enabling practical analysis and reasoning across modalities. To support learning and evaluation in this setup, we contribute new datasets: the TS Instruct Training Dataset which pairs diverse time-series data with relevant text instructions and responses for instruction tuning, the TS Instruct Question and Answer (QA) Gold Dataset which provides multiple-choice questions designed to evaluate multimodal reasoning, and a TS Instruct Quantitative Probing Set which contains a small subset of the TS Instruct QA tasks alongside math and decision-making questions for LLM evaluation. We designed a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multi-modal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning. ~To ensure replicability and facilitate future research, all models, datasets, and code will be available at [\texttt{Github-URL].}

  • 3 authors
·
Mar 13

AutoP2C: An LLM-Based Agent Framework for Code Repository Generation from Multimodal Content in Academic Papers

Machine Learning (ML) research is spread through academic papers featuring rich multimodal content, including text, diagrams, and tabular results. However, translating these multimodal elements into executable code remains a challenging and time-consuming process that requires substantial ML expertise. We introduce ``Paper-to-Code'' (P2C), a novel task that transforms the multimodal content of scientific publications into fully executable code repositories, which extends beyond the existing formulation of code generation that merely converts textual descriptions into isolated code snippets. To automate the P2C process, we propose AutoP2C, a multi-agent framework based on large language models that processes both textual and visual content from research papers to generate complete code repositories. Specifically, AutoP2C contains four stages: (1) repository blueprint extraction from established codebases, (2) multimodal content parsing that integrates information from text, equations, and figures, (3) hierarchical task decomposition for structured code generation, and (4) iterative feedback-driven debugging to ensure functionality and performance. Evaluation on a benchmark of eight research papers demonstrates the effectiveness of AutoP2C, which can successfully generate executable code repositories for all eight papers, while OpenAI-o1 or DeepSeek-R1 can only produce runnable code for one paper. The code is available at https://github.com/shoushouyu/Automated-Paper-to-Code.

  • 6 authors
·
Apr 28

Application of LLM Agents in Recruitment: A Novel Framework for Resume Screening

The automation of resume screening is a crucial aspect of the recruitment process in organizations. Automated resume screening systems often encompass a range of natural language processing (NLP) tasks. The advent of Large Language Models (LLMs) has notably enhanced the efficacy of these systems, showcasing their robust generalization abilities across diverse language-related tasks. Accompanying these developments are various agents based on LLMs, which facilitate their application in practical scenarios. This paper introduces a novel LLM-based agent framework for resume screening, aimed at enhancing efficiency and time management in recruitment processes. Our framework is distinct in its ability to efficiently summarize and grade each resume from a large dataset. Moreover, it utilizes LLM agents for decision-making, determining which candidates receive job offers, or which ones to bring in for interviews. To evaluate our framework, we constructed a dataset from actual resumes and conducted simulate a resume screening process. Subsequently, the outcomes of the simulation experiment were compared and subjected to detailed analysis. The results demonstrate that our automated resume screening framework is 11 times faster than traditional manual methods. Furthermore, by fine-tuning the LLMs, we observed a significant improvement in the F1 score, reaching 87.73\%, during the resume sentence classification phase. In the resume summarization and grading phase, our fine-tuned model surpassed the baseline performance of the GPT-3.5 model. Analysis of the decision-making efficacy of the LLM agents in the final offer stage further underscores the potential of LLM agents in transforming resume screening processes.

  • 3 authors
·
Jan 16, 2024

FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design

Recent advancements in Large Language Models (LLMs) have exhibited notable efficacy in question-answering (QA) tasks across diverse domains. Their prowess in integrating extensive web knowledge has fueled interest in developing LLM-based autonomous agents. While LLMs are efficient in decoding human instructions and deriving solutions by holistically processing historical inputs, transitioning to purpose-driven agents requires a supplementary rational architecture to process multi-source information, establish reasoning chains, and prioritize critical tasks. Addressing this, we introduce FinMem, a novel LLM-based agent framework devised for financial decision-making. It encompasses three core modules: Profiling, to customize the agent's characteristics; Memory, with layered message processing, to aid the agent in assimilating hierarchical financial data; and Decision-making, to convert insights gained from memories into investment decisions. Notably, FinMem's memory module aligns closely with the cognitive structure of human traders, offering robust interpretability and real-time tuning. Its adjustable cognitive span allows for the retention of critical information beyond human perceptual limits, thereby enhancing trading outcomes. This framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions in the volatile financial environment. We first compare FinMem with various algorithmic agents on a scalable real-world financial dataset, underscoring its leading trading performance in stocks. We then fine-tuned the agent's perceptual span and character setting to achieve a significantly enhanced trading performance. Collectively, FinMem presents a cutting-edge LLM agent framework for automated trading, boosting cumulative investment returns.

  • 9 authors
·
Nov 22, 2023

DataLab: A Unifed Platform for LLM-Powered Business Intelligence

Business intelligence (BI) transforms large volumes of data within modern organizations into actionable insights for informed decision-making. Recently, large language model (LLM)-based agents have streamlined the BI workflow by automatically performing task planning, reasoning, and actions in executable environments based on natural language (NL) queries. However, existing approaches primarily focus on individual BI tasks such as NL2SQL and NL2VIS. The fragmentation of tasks across different data roles and tools lead to inefficiencies and potential errors due to the iterative and collaborative nature of BI. In this paper, we introduce DataLab, a unified BI platform that integrates a one-stop LLM-based agent framework with an augmented computational notebook interface. DataLab supports a wide range of BI tasks for different data roles by seamlessly combining LLM assistance with user customization within a single environment. To achieve this unification, we design a domain knowledge incorporation module tailored for enterprise-specific BI tasks, an inter-agent communication mechanism to facilitate information sharing across the BI workflow, and a cell-based context management strategy to enhance context utilization efficiency in BI notebooks. Extensive experiments demonstrate that DataLab achieves state-of-the-art performance on various BI tasks across popular research benchmarks. Moreover, DataLab maintains high effectiveness and efficiency on real-world datasets from Tencent, achieving up to a 58.58% increase in accuracy and a 61.65% reduction in token cost on enterprise-specific BI tasks.

  • 21 authors
·
Dec 3, 2024

Sibyl: Simple yet Effective Agent Framework for Complex Real-world Reasoning

Existing agents based on large language models (LLMs) demonstrate robust problem-solving capabilities by integrating LLMs' inherent knowledge, strong in-context learning and zero-shot capabilities, and the use of tools combined with intricately designed LLM invocation workflows by humans. However, these agents still exhibit shortcomings in long-term reasoning and under-use the potential of existing tools, leading to noticeable deficiencies in complex real-world reasoning scenarios. To address these limitations, we introduce Sibyl, a simple yet powerful LLM-based agent framework designed to tackle complex reasoning tasks by efficiently leveraging a minimal set of tools. Drawing inspiration from Global Workspace Theory, Sibyl incorporates a global workspace to enhance the management and sharing of knowledge and conversation history throughout the system. Furthermore, guided by Society of Mind Theory, Sibyl implements a multi-agent debate-based jury to self-refine the final answers, ensuring a comprehensive and balanced approach. This approach aims to reduce system complexity while expanding the scope of problems solvable-from matters typically resolved by humans in minutes to those requiring hours or even days, thus facilitating a shift from System-1 to System-2 thinking. Sibyl has been designed with a focus on scalability and ease of debugging by incorporating the concept of reentrancy from functional programming from its inception, with the aim of seamless and low effort integration in other LLM applications to improve capabilities. Our experimental results on the GAIA benchmark test set reveal that the Sibyl agent instantiated with GPT-4 achieves state-of-the-art performance with an average score of 34.55%, compared to other agents based on GPT-4. We hope that Sibyl can inspire more reliable and reusable LLM-based agent solutions to address complex real-world reasoning tasks.

  • 4 authors
·
Jul 15, 2024 4

Large Language Models Can Solve Real-World Planning Rigorously with Formal Verification Tools

Large Language Models (LLMs) struggle to directly generate correct plans for complex multi-constraint planning problems, even with self-verification and self-critique. For example, a U.S. domestic travel planning benchmark TravelPlanner was proposed in Xie et al. (2024), where the best LLM OpenAI o1-preview can only find viable travel plans with a 10% success rate given all needed information. In this work, we tackle this by proposing an LLM-based planning framework that formalizes and solves complex multi-constraint planning problems as constrained satisfiability problems, which are further consumed by sound and complete satisfiability solvers. We start with TravelPlanner as the primary use case and show that our framework achieves a success rate of 93.9% and is effective with diverse paraphrased prompts. More importantly, our framework has strong zero-shot generalizability, successfully handling unseen constraints in our newly created unseen international travel dataset and generalizing well to new fundamentally different domains. Moreover, when user input queries are infeasible, our framework can identify the unsatisfiable core, provide failure reasons, and offers personalized modification suggestions. We show that our framework can modify and solve for an average of 81.6% and 91.7% unsatisfiable queries from two datasets and prove with ablations that all key components of our framework are effective and necessary. Project page: https://sites.google.com/view/llm-rwplanning.

  • 4 authors
·
Apr 18, 2024

Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text

Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.

  • 4 authors
·
Jul 26

AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks

Test-time scaling (TTS) enhances the performance of large language models (LLMs) by allocating additional compute resources during inference. However, existing research primarily investigates TTS in single-stage tasks; while many real-world problems are multi-stage complex tasks, composed of a sequence of heterogeneous subtasks with each subtask requires LLM of specific capability. Therefore, we study a novel problem: the test-time compute-optimal scaling in multi-stage complex tasks, aiming to select suitable models and allocate budgets per subtask to maximize overall performance. TTS in multi-stage tasks introduces two fundamental challenges: (i) The combinatorial search space of model and budget allocations, combined with the high cost of inference, makes brute-force search impractical. (ii) The optimal model and budget allocations across subtasks are interdependent, increasing the complexity of the compute-optimal search. To address this gap, we conduct extensive pilot experiments on four tasks across six datasets, deriving three empirical insights characterizing the behavior of LLMs in multi-stage complex tasks. Informed by these insights, we propose AgentTTS, an LLM-agent-based framework that autonomously searches for compute-optimal allocations through iterative feedback-driven interactions with the execution environment. Experimental results demonstrate that AgentTTS significantly outperforms traditional and other LLM-based baselines in search efficiency, and shows improved robustness to varying training set sizes and enhanced interpretability.

CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges

Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks such as generating standalone code units. Real-world software development, however, often involves complex code repositories (named repo) with complex dependencies and extensive documentation. To fill this gap, our research pivots towards evaluating LLMs in a more realistic setting -- real-world repo-level code generation. We introduce CodeAgentBench, a manually curated benchmark for repo-level code generation. This benchmark comprises five high-quality Python projects, encompassing a total of 101 samples. We assess nine leading LLMs on repo-level tasks and observe a decline in their performance. To tackle this, we present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation. CodeAgent integrates five programming tools, enabling interaction with software artifacts for information retrieval, code symbol navigation, and code testing. We implement four agent strategies to optimize these tools' usage. Our experiments on CodeAgentBench show that CodeAgent enhances LLM performance significantly, with improvements ranging from 18.1\% to 250\%. Further tests on the HumanEval benchmark confirm CodeAgent's adaptability and efficacy across various code generation tasks. Notably, CodeAgent outperforms commercial products like Github Copilot, showcasing superior accuracy and efficiency. These results demonstrate CodeAgent's robust capabilities in code generation, highlighting its potential for real-world repo-level coding challenges.

  • 5 authors
·
Jan 14, 2024