new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

STARFlow: Scaling Latent Normalizing Flows for High-resolution Image Synthesis

We present STARFlow, a scalable generative model based on normalizing flows that achieves strong performance in high-resolution image synthesis. The core of STARFlow is Transformer Autoregressive Flow (TARFlow), which combines the expressive power of normalizing flows with the structured modeling capabilities of Autoregressive Transformers. We first establish the theoretical universality of TARFlow for modeling continuous distributions. Building on this foundation, we introduce several key architectural and algorithmic innovations to significantly enhance scalability: (1) a deep-shallow design, wherein a deep Transformer block captures most of the model representational capacity, complemented by a few shallow Transformer blocks that are computationally efficient yet substantially beneficial; (2) modeling in the latent space of pretrained autoencoders, which proves more effective than direct pixel-level modeling; and (3) a novel guidance algorithm that significantly boosts sample quality. Crucially, our model remains an end-to-end normalizing flow, enabling exact maximum likelihood training in continuous spaces without discretization. STARFlow achieves competitive performance in both class-conditional and text-conditional image generation tasks, approaching state-of-the-art diffusion models in sample quality. To our knowledge, this work is the first successful demonstration of normalizing flows operating effectively at this scale and resolution.

Advancing End-to-End Pixel Space Generative Modeling via Self-supervised Pre-training

Pixel-space generative models are often more difficult to train and generally underperform compared to their latent-space counterparts, leaving a persistent performance and efficiency gap. In this paper, we introduce a novel two-stage training framework that closes this gap for pixel-space diffusion and consistency models. In the first stage, we pre-train encoders to capture meaningful semantics from clean images while aligning them with points along the same deterministic sampling trajectory, which evolves points from the prior to the data distribution. In the second stage, we integrate the encoder with a randomly initialized decoder and fine-tune the complete model end-to-end for both diffusion and consistency models. Our training framework demonstrates strong empirical performance on ImageNet dataset. Specifically, our diffusion model reaches an FID of 2.04 on ImageNet-256 and 2.35 on ImageNet-512 with 75 number of function evaluations (NFE), surpassing prior pixel-space methods by a large margin in both generation quality and efficiency while rivaling leading VAE-based models at comparable training cost. Furthermore, on ImageNet-256, our consistency model achieves an impressive FID of 8.82 in a single sampling step, significantly surpassing its latent-space counterpart. To the best of our knowledge, this marks the first successful training of a consistency model directly on high-resolution images without relying on pre-trained VAEs or diffusion models.

GD-ML AMAP-ML
·
Oct 14 3

Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective

Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.

  • 6 authors
·
Oct 16, 2024 2

Compressed and Smooth Latent Space for Text Diffusion Modeling

Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by 8times while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than 2times faster inference.

  • 5 authors
·
Jun 26

Deliberation in Latent Space via Differentiable Cache Augmentation

Techniques enabling large language models (LLMs) to "think more" by generating and attending to intermediate reasoning steps have shown promise in solving complex problems. However, the standard approaches generate sequences of discrete tokens immediately before responding, and so they can incur significant latency costs and be challenging to optimize. In this work, we demonstrate that a frozen LLM can be augmented with an offline coprocessor that operates on the model's key-value (kv) cache. This coprocessor augments the cache with a set of latent embeddings designed to improve the fidelity of subsequent decoding. We train this coprocessor using the language modeling loss from the decoder on standard pretraining data, while keeping the decoder itself frozen. This approach enables the model to learn, in an end-to-end differentiable fashion, how to distill additional computation into its kv-cache. Because the decoder remains unchanged, the coprocessor can operate offline and asynchronously, and the language model can function normally if the coprocessor is unavailable or if a given cache is deemed not to require extra computation. We show experimentally that when a cache is augmented, the decoder achieves lower perplexity on numerous subsequent tokens. Furthermore, even without any task-specific training, our experiments demonstrate that cache augmentation consistently reduces perplexity and improves performance across a range of reasoning-intensive tasks.

  • 5 authors
·
Dec 23, 2024 5

Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance

Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at https://github.com/ChenWu98/cycle-diffusion.

  • 2 authors
·
Oct 11, 2022 1

Latent Zoning Network: A Unified Principle for Generative Modeling, Representation Learning, and Classification

Generative modeling, representation learning, and classification are three core problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions remain largely disjoint. In this paper, we ask: Can a unified principle address all three? Such unification could simplify ML pipelines and foster greater synergy across tasks. We introduce Latent Zoning Network (LZN) as a step toward this goal. At its core, LZN creates a shared Gaussian latent space that encodes information across all tasks. Each data type (e.g., images, text, labels) is equipped with an encoder that maps samples to disjoint latent zones, and a decoder that maps latents back to data. ML tasks are expressed as compositions of these encoders and decoders: for example, label-conditional image generation uses a label encoder and image decoder; image embedding uses an image encoder; classification uses an image encoder and label decoder. We demonstrate the promise of LZN in three increasingly complex scenarios: (1) LZN can enhance existing models (image generation): When combined with the SoTA Rectified Flow model, LZN improves FID on CIFAR10 from 2.76 to 2.59-without modifying the training objective. (2) LZN can solve tasks independently (representation learning): LZN can implement unsupervised representation learning without auxiliary loss functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and 0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can solve multiple tasks simultaneously (joint generation and classification): With image and label encoders/decoders, LZN performs both tasks jointly by design, improving FID and achieving SoTA classification accuracy on CIFAR10. The code and trained models are available at https://github.com/microsoft/latent-zoning-networks. The project website is at https://zinanlin.me/blogs/latent_zoning_networks.html.

  • 6 authors
·
Sep 19 5

MIRACLE: Towards Personalized Dialogue Generation with Latent-Space Multiple Personal Attribute Control

Personalized dialogue systems aim to endow the chatbot agent with more anthropomorphic traits for human-like interactions. Previous approaches have explored explicitly user profile modeling using text descriptions, implicit derivation of user embeddings, or utilizing handicraft prompts for ChatGPT-like models. However, textual personas are limited in describing multi-faceted attributes (e.g., language style, inner character nuances), implicit embedding suffers from personality sparsity, and handicraft prompts lack fine-grained and stable controllability. Hence, these approaches may struggle with complex personalized dialogue generation tasks that require generating controllable responses with multiple personal attributes. To this end, we propose \textsc{Miracle}, a novel personalized dialogue generation method through MultIple PeRsonal Attributes Control within Latent-Space Energy-based Models. ttributes Control within Latent-Space Energy-based Models. Specifically, our approach first disentangles complex personality into multi-faceted attributes. Subsequently, we employ a conditional variational auto-encoder to align with the dense personalized responses within a latent joint attribute space. We have also tailored a dedicated energy function and customized the ordinary differential equations sampling method to offer flexible attribute composition and precise attribute control. Extensive experiments demonstrate that Miracle outperforms several strong baselines in terms of personality controllability and response generation quality. Our dataset and code are available at https://github.com/LZY-the-boys/MIRACLE

  • 6 authors
·
Oct 22, 2023

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation

Image tokenization plays a critical role in reducing the computational demands of modeling high-resolution images, significantly improving the efficiency of image and multimodal understanding and generation. Recent advances in 1D latent spaces have reduced the number of tokens required by eliminating the need for a 2D grid structure. In this paper, we further advance compact discrete image representation by introducing 1D binary image latents. By representing each image as a sequence of binary vectors, rather than using traditional one-hot codebook tokens, our approach preserves high-resolution details while maintaining the compactness of 1D latents. To the best of our knowledge, our text-to-image models are the first to achieve competitive performance in both diffusion and auto-regressive generation using just 128 discrete tokens for images up to 1024x1024, demonstrating up to a 32-fold reduction in token numbers compared to standard VQ-VAEs. The proposed 1D binary latent space, coupled with simple model architectures, achieves marked improvements in speed training and inference speed. Our text-to-image models allow for a global batch size of 4096 on a single GPU node with 8 AMD MI300X GPUs, and the training can be completed within 200 GPU days. Our models achieve competitive performance compared to modern image generation models without any in-house private training data or post-training refinements, offering a scalable and efficient alternative to conventional tokenization methods.

  • 10 authors
·
Jun 26

Relative representations enable zero-shot latent space communication

Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).

  • 6 authors
·
Sep 30, 2022

Expressive Talking Head Video Encoding in StyleGAN2 Latent-Space

While the recent advances in research on video reenactment have yielded promising results, the approaches fall short in capturing the fine, detailed, and expressive facial features (e.g., lip-pressing, mouth puckering, mouth gaping, and wrinkles) which are crucial in generating realistic animated face videos. To this end, we propose an end-to-end expressive face video encoding approach that facilitates data-efficient high-quality video re-synthesis by optimizing low-dimensional edits of a single Identity-latent. The approach builds on StyleGAN2 image inversion and multi-stage non-linear latent-space editing to generate videos that are nearly comparable to input videos. While existing StyleGAN latent-based editing techniques focus on simply generating plausible edits of static images, we automate the latent-space editing to capture the fine expressive facial deformations in a sequence of frames using an encoding that resides in the Style-latent-space (StyleSpace) of StyleGAN2. The encoding thus obtained could be super-imposed on a single Identity-latent to facilitate re-enactment of face videos at 1024^2. The proposed framework economically captures face identity, head-pose, and complex expressive facial motions at fine levels, and thereby bypasses training, person modeling, dependence on landmarks/ keypoints, and low-resolution synthesis which tend to hamper most re-enactment approaches. The approach is designed with maximum data efficiency, where a single W+ latent and 35 parameters per frame enable high-fidelity video rendering. This pipeline can also be used for puppeteering (i.e., motion transfer).

  • 2 authors
·
Mar 28, 2022

DYMO-Hair: Generalizable Volumetric Dynamics Modeling for Robot Hair Manipulation

Hair care is an essential daily activity, yet it remains inaccessible to individuals with limited mobility and challenging for autonomous robot systems due to the fine-grained physical structure and complex dynamics of hair. In this work, we present DYMO-Hair, a model-based robot hair care system. We introduce a novel dynamics learning paradigm that is suited for volumetric quantities such as hair, relying on an action-conditioned latent state editing mechanism, coupled with a compact 3D latent space of diverse hairstyles to improve generalizability. This latent space is pre-trained at scale using a novel hair physics simulator, enabling generalization across previously unseen hairstyles. Using the dynamics model with a Model Predictive Path Integral (MPPI) planner, DYMO-Hair is able to perform visual goal-conditioned hair styling. Experiments in simulation demonstrate that DYMO-Hair's dynamics model outperforms baselines on capturing local deformation for diverse, unseen hairstyles. DYMO-Hair further outperforms baselines in closed-loop hair styling tasks on unseen hairstyles, with an average of 22% lower final geometric error and 42% higher success rate than the state-of-the-art system. Real-world experiments exhibit zero-shot transferability of our system to wigs, achieving consistent success on challenging unseen hairstyles where the state-of-the-art system fails. Together, these results introduce a foundation for model-based robot hair care, advancing toward more generalizable, flexible, and accessible robot hair styling in unconstrained physical environments. More details are available on our project page: https://chengyzhao.github.io/DYMOHair-web/.

CoCoLIT: ControlNet-Conditioned Latent Image Translation for MRI to Amyloid PET Synthesis

Synthesizing amyloid PET scans from the more widely available and accessible structural MRI modality offers a promising, cost-effective approach for large-scale Alzheimer's Disease (AD) screening. This is motivated by evidence that, while MRI does not directly detect amyloid pathology, it may nonetheless encode information correlated with amyloid deposition that can be uncovered through advanced modeling. However, the high dimensionality and structural complexity of 3D neuroimaging data pose significant challenges for existing MRI-to-PET translation methods. Modeling the cross-modality relationship in a lower-dimensional latent space can simplify the learning task and enable more effective translation. As such, we present CoCoLIT (ControlNet-Conditioned Latent Image Translation), a diffusion-based latent generative framework that incorporates three main innovations: (1) a novel Weighted Image Space Loss (WISL) that improves latent representation learning and synthesis quality; (2) a theoretical and empirical analysis of Latent Average Stabilization (LAS), an existing technique used in similar generative models to enhance inference consistency; and (3) the introduction of ControlNet-based conditioning for MRI-to-PET translation. We evaluate CoCoLIT's performance on publicly available datasets and find that our model significantly outperforms state-of-the-art methods on both image-based and amyloid-related metrics. Notably, in amyloid-positivity classification, CoCoLIT outperforms the second-best method with improvements of +10.5% on the internal dataset and +23.7% on the external dataset. The code and models of our approach are available at https://github.com/brAIn-science/CoCoLIT.

  • 6 authors
·
Aug 2

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high-quality TTA systems remain inefficient due to hundreds of iterations required in the inference phase and large amount of model parameters. To address the challenges, we propose SpecMaskGIT, a light-weighted, efficient yet effective TTA model based on the masked generative modeling of spectrograms. First, SpecMaskGIT synthesizes a realistic 10s audio clip by less than 16 iterations, an order-of-magnitude less than previous iterative TTA methods.As a discrete model, SpecMaskGIT outperforms larger VQ-Diffusion and auto-regressive models in the TTA benchmark, while being real-time with only 4 CPU cores or even 30x faster with a GPU. Next, built upon a latent space of Mel-spectrogram, SpecMaskGIT has a wider range of applications (e.g., the zero-shot bandwidth extension) than similar methods built on the latent wave domain. Moreover, we interpret SpecMaskGIT as a generative extension to previous discriminative audio masked Transformers, and shed light on its audio representation learning potential. We hope our work inspires the exploration of masked audio modeling toward further diverse scenarios.

  • 9 authors
·
Jun 25, 2024

Binary Latent Diffusion

In this paper, we show that a binary latent space can be explored for compact yet expressive image representations. We model the bi-directional mappings between an image and the corresponding latent binary representation by training an auto-encoder with a Bernoulli encoding distribution. On the one hand, the binary latent space provides a compact discrete image representation of which the distribution can be modeled more efficiently than pixels or continuous latent representations. On the other hand, we now represent each image patch as a binary vector instead of an index of a learned cookbook as in discrete image representations with vector quantization. In this way, we obtain binary latent representations that allow for better image quality and high-resolution image representations without any multi-stage hierarchy in the latent space. In this binary latent space, images can now be generated effectively using a binary latent diffusion model tailored specifically for modeling the prior over the binary image representations. We present both conditional and unconditional image generation experiments with multiple datasets, and show that the proposed method performs comparably to state-of-the-art methods while dramatically improving the sampling efficiency to as few as 16 steps without using any test-time acceleration. The proposed framework can also be seamlessly scaled to 1024 times 1024 high-resolution image generation without resorting to latent hierarchy or multi-stage refinements.

  • 4 authors
·
Apr 10, 2023

General Preference Modeling with Preference Representations for Aligning Language Models

Modeling human preferences is crucial for aligning foundation models with human values. Traditional reward modeling methods, such as the Bradley-Terry (BT) reward model, fall short in expressiveness, particularly in addressing intransitive preferences. Although supervised pair preference models (PairPM) can express general preferences, their implementation is highly ad-hoc and cannot guarantee a consistent preference probability of compared pairs. Additionally, they impose high computational costs due to their quadratic query complexity when comparing multiple responses. In this paper, we introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently, achieving linear query complexity. Additionally, we propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback. Experimental results show that our General Preference representation model (GPM) outperforms the BT reward model on the RewardBench benchmark with a margin of up to 5.6% and effectively models cyclic preferences where any BT reward model behaves like a random guess. Furthermore, evaluations on downstream tasks such as AlpacaEval2.0 and MT-Bench, following the language model post-training with GPO and our general preference model, reveal substantial performance improvements with margins up to 9.3%. These findings indicate that our method may enhance the alignment of foundation models with nuanced human values. The code is available at https://github.com/general-preference/general-preference-model.

  • 5 authors
·
Oct 3, 2024 4

SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion

The generation of Scalable Vector Graphics (SVG) assets from textual data remains a significant challenge, largely due to the scarcity of high-quality vector datasets and the limitations in scalable vector representations required for modeling intricate graphic distributions. This work introduces SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without reliance on a text-based discrete language model or prolonged SDS optimization. The essence of SVGFusion is to learn a continuous latent space for vector graphics with a popular Text-to-Image framework. Specifically, SVGFusion consists of two modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). VP-VAE takes both the SVGs and corresponding rasterizations as inputs and learns a continuous latent space, whereas VS-DiT learns to generate a latent code within this space based on the text prompt. Based on VP-VAE, a novel rendering sequence modeling strategy is proposed to enable the latent space to embed the knowledge of construction logics in SVGs. This empowers the model to achieve human-like design capabilities in vector graphics, while systematically preventing occlusion in complex graphic compositions. Moreover, our SVGFusion's ability can be continuously improved by leveraging the scalability of the VS-DiT by adding more VS-DiT blocks. A large-scale SVG dataset is collected to evaluate the effectiveness of our proposed method. Extensive experimentation has confirmed the superiority of our SVGFusion over existing SVG generation methods, achieving enhanced quality and generalizability, thereby establishing a novel framework for SVG content creation. Code, model, and data will be released at: https://ximinng.github.io/SVGFusionProject/{https://ximinng.github.io/SVGFusionProject/}

  • 5 authors
·
Dec 11, 2024

Circuit Representation Learning with Masked Gate Modeling and Verilog-AIG Alignment

Understanding the structure and function of circuits is crucial for electronic design automation (EDA). Circuits can be formulated as And-Inverter graphs (AIGs), enabling efficient implementation of representation learning through graph neural networks (GNNs). Masked modeling paradigms have been proven effective in graph representation learning. However, masking augmentation to original circuits will destroy their logical equivalence, which is unsuitable for circuit representation learning. Moreover, existing masked modeling paradigms often prioritize structural information at the expense of abstract information such as circuit function. To address these limitations, we introduce MGVGA, a novel constrained masked modeling paradigm incorporating masked gate modeling (MGM) and Verilog-AIG alignment (VGA). Specifically, MGM preserves logical equivalence by masking gates in the latent space rather than in the original circuits, subsequently reconstructing the attributes of these masked gates. Meanwhile, large language models (LLMs) have demonstrated an excellent understanding of the Verilog code functionality. Building upon this capability, VGA performs masking operations on original circuits and reconstructs masked gates under the constraints of equivalent Verilog codes, enabling GNNs to learn circuit functions from LLMs. We evaluate MGVGA on various logic synthesis tasks for EDA and show the superior performance of MGVGA compared to previous state-of-the-art methods. Our code is available at https://github.com/wuhy68/MGVGA.

  • 4 authors
·
Feb 18

UrFound: Towards Universal Retinal Foundation Models via Knowledge-Guided Masked Modeling

Retinal foundation models aim to learn generalizable representations from diverse retinal images, facilitating label-efficient model adaptation across various ophthalmic tasks. Despite their success, current retinal foundation models are generally restricted to a single imaging modality, such as Color Fundus Photography (CFP) or Optical Coherence Tomography (OCT), limiting their versatility. Moreover, these models may struggle to fully leverage expert annotations and overlook the valuable domain knowledge essential for domain-specific representation learning. To overcome these limitations, we introduce UrFound, a retinal foundation model designed to learn universal representations from both multimodal retinal images and domain knowledge. UrFound is equipped with a modality-agnostic image encoder and accepts either CFP or OCT images as inputs. To integrate domain knowledge into representation learning, we encode expert annotation in text supervision and propose a knowledge-guided masked modeling strategy for model pre-training. It involves reconstructing randomly masked patches of retinal images while predicting masked text tokens conditioned on the corresponding retinal image. This approach aligns multimodal images and textual expert annotations within a unified latent space, facilitating generalizable and domain-specific representation learning. Experimental results demonstrate that UrFound exhibits strong generalization ability and data efficiency when adapting to various tasks in retinal image analysis. By training on ~180k retinal images, UrFound significantly outperforms the state-of-the-art retinal foundation model trained on up to 1.6 million unlabelled images across 8 public retinal datasets. Our code and data are available at https://github.com/yukkai/UrFound.

  • 8 authors
·
Aug 10, 2024

STARFlow-V: End-to-End Video Generative Modeling with Normalizing Flow

Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.

apple Apple
·
Nov 25 2

Simultaneous Modeling of Protein Conformation and Dynamics via Autoregression

Understanding protein dynamics is critical for elucidating their biological functions. The increasing availability of molecular dynamics (MD) data enables the training of deep generative models to efficiently explore the conformational space of proteins. However, existing approaches either fail to explicitly capture the temporal dependencies between conformations or do not support direct generation of time-independent samples. To address these limitations, we introduce ConfRover, an autoregressive model that simultaneously learns protein conformation and dynamics from MD trajectories, supporting both time-dependent and time-independent sampling. At the core of our model is a modular architecture comprising: (i) an encoding layer, adapted from protein folding models, that embeds protein-specific information and conformation at each time frame into a latent space; (ii) a temporal module, a sequence model that captures conformational dynamics across frames; and (iii) an SE(3) diffusion model as the structure decoder, generating conformations in continuous space. Experiments on ATLAS, a large-scale protein MD dataset of diverse structures, demonstrate the effectiveness of our model in learning conformational dynamics and supporting a wide range of downstream tasks. ConfRover is the first model to sample both protein conformations and trajectories within a single framework, offering a novel and flexible approach for learning from protein MD data.

  • 6 authors
·
May 23

Modeling Long-term User Behaviors with Diffusion-driven Multi-interest Network for CTR Prediction

CTR (Click-Through Rate) prediction, crucial for recommender systems and online advertising, etc., has been confirmed to benefit from modeling long-term user behaviors. Nonetheless, the vast number of behaviors and complexity of noise interference pose challenges to prediction efficiency and effectiveness. Recent solutions have evolved from single-stage models to two-stage models. However, current two-stage models often filter out significant information, resulting in an inability to capture diverse user interests and build the complete latent space of user interests. Inspired by multi-interest and generative modeling, we propose DiffuMIN (Diffusion-driven Multi-Interest Network) to model long-term user behaviors and thoroughly explore the user interest space. Specifically, we propose a target-oriented multi-interest extraction method that begins by orthogonally decomposing the target to obtain interest channels. This is followed by modeling the relationships between interest channels and user behaviors to disentangle and extract multiple user interests. We then adopt a diffusion module guided by contextual interests and interest channels, which anchor users' personalized and target-oriented interest types, enabling the generation of augmented interests that align with the latent spaces of user interests, thereby further exploring restricted interest space. Finally, we leverage contrastive learning to ensure that the generated augmented interests align with users' genuine preferences. Extensive offline experiments are conducted on two public datasets and one industrial dataset, yielding results that demonstrate the superiority of DiffuMIN. Moreover, DiffuMIN increased CTR by 1.52% and CPM by 1.10% in online A/B testing. Our source code is available at https://github.com/laiweijiang/DiffuMIN.

  • 8 authors
·
Aug 21

A Brain Wave Encodes a Thousand Tokens: Modeling Inter-Cortical Neural Interactions for Effective EEG-based Emotion Recognition

Human emotions are difficult to convey through words and are often abstracted in the process; however, electroencephalogram (EEG) signals can offer a more direct lens into emotional brain activity. Recent studies show that deep learning models can process these signals to perform emotion recognition with high accuracy. However, many existing approaches overlook the dynamic interplay between distinct brain regions, which can be crucial to understanding how emotions unfold and evolve over time, potentially aiding in more accurate emotion recognition. To address this, we propose RBTransformer, a Transformer-based neural network architecture that models inter-cortical neural dynamics of the brain in latent space to better capture structured neural interactions for effective EEG-based emotion recognition. First, the EEG signals are converted into Band Differential Entropy (BDE) tokens, which are then passed through Electrode Identity embeddings to retain spatial provenance. These tokens are processed through successive inter-cortical multi-head attention blocks that construct an electrode x electrode attention matrix, allowing the model to learn the inter-cortical neural dependencies. The resulting features are then passed through a classification head to obtain the final prediction. We conducted extensive experiments, specifically under subject-dependent settings, on the SEED, DEAP, and DREAMER datasets, over all three dimensions, Valence, Arousal, and Dominance (for DEAP and DREAMER), under both binary and multi-class classification settings. The results demonstrate that the proposed RBTransformer outperforms all previous state-of-the-art methods across all three datasets, over all three dimensions under both classification settings. The source code is available at: https://github.com/nnilayy/RBTransformer.

  • 3 authors
·
Nov 17 2

Diffusion Transformers with Representation Autoencoders

Latent generative modeling, where a pretrained autoencoder maps pixels into a latent space for the diffusion process, has become the standard strategy for Diffusion Transformers (DiT); however, the autoencoder component has barely evolved. Most DiTs continue to rely on the original VAE encoder, which introduces several limitations: outdated backbones that compromise architectural simplicity, low-dimensional latent spaces that restrict information capacity, and weak representations that result from purely reconstruction-based training and ultimately limit generative quality. In this work, we explore replacing the VAE with pretrained representation encoders (e.g., DINO, SigLIP, MAE) paired with trained decoders, forming what we term Representation Autoencoders (RAEs). These models provide both high-quality reconstructions and semantically rich latent spaces, while allowing for a scalable transformer-based architecture. Since these latent spaces are typically high-dimensional, a key challenge is enabling diffusion transformers to operate effectively within them. We analyze the sources of this difficulty, propose theoretically motivated solutions, and validate them empirically. Our approach achieves faster convergence without auxiliary representation alignment losses. Using a DiT variant equipped with a lightweight, wide DDT head, we achieve strong image generation results on ImageNet: 1.51 FID at 256x256 (no guidance) and 1.13 at both 256x256 and 512x512 (with guidance). RAE offers clear advantages and should be the new default for diffusion transformer training.

Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction

Efficiently deriving structured workflows from unannotated dialogs remains an underexplored and formidable challenge in computational linguistics. Automating this process could significantly accelerate the manual design of workflows in new domains and enable the grounding of large language models in domain-specific flowcharts, enhancing transparency and controllability. In this paper, we introduce Dialog2Flow (D2F) embeddings, which differ from conventional sentence embeddings by mapping utterances to a latent space where they are grouped according to their communicative and informative functions (i.e., the actions they represent). D2F allows for modeling dialogs as continuous trajectories in a latent space with distinct action-related regions. By clustering D2F embeddings, the latent space is quantized, and dialogs can be converted into sequences of region/action IDs, facilitating the extraction of the underlying workflow. To pre-train D2F, we build a comprehensive dataset by unifying twenty task-oriented dialog datasets with normalized per-turn action annotations. We also introduce a novel soft contrastive loss that leverages the semantic information of these actions to guide the representation learning process, showing superior performance compared to standard supervised contrastive loss. Evaluation against various sentence embeddings, including dialog-specific ones, demonstrates that D2F yields superior qualitative and quantitative results across diverse domains.

  • 3 authors
·
Oct 24, 2024 2

Taming Generative Synthetic Data for X-ray Prohibited Item Detection

Training prohibited item detection models requires a large amount of X-ray security images, but collecting and annotating these images is time-consuming and laborious. To address data insufficiency, X-ray security image synthesis methods composite images to scale up datasets. However, previous methods primarily follow a two-stage pipeline, where they implement labor-intensive foreground extraction in the first stage and then composite images in the second stage. Such a pipeline introduces inevitable extra labor cost and is not efficient. In this paper, we propose a one-stage X-ray security image synthesis pipeline (Xsyn) based on text-to-image generation, which incorporates two effective strategies to improve the usability of synthetic images. The Cross-Attention Refinement (CAR) strategy leverages the cross-attention map from the diffusion model to refine the bounding box annotation. The Background Occlusion Modeling (BOM) strategy explicitly models background occlusion in the latent space to enhance imaging complexity. To the best of our knowledge, compared with previous methods, Xsyn is the first to achieve high-quality X-ray security image synthesis without extra labor cost. Experiments demonstrate that our method outperforms all previous methods with 1.2% mAP improvement, and the synthetic images generated by our method are beneficial to improve prohibited item detection performance across various X-ray security datasets and detectors. Code is available at https://github.com/pILLOW-1/Xsyn/.

  • 6 authors
·
Nov 19 2

Music2Latent2: Audio Compression with Summary Embeddings and Autoregressive Decoding

Efficiently compressing high-dimensional audio signals into a compact and informative latent space is crucial for various tasks, including generative modeling and music information retrieval (MIR). Existing audio autoencoders, however, often struggle to achieve high compression ratios while preserving audio fidelity and facilitating efficient downstream applications. We introduce Music2Latent2, a novel audio autoencoder that addresses these limitations by leveraging consistency models and a novel approach to representation learning based on unordered latent embeddings, which we call summary embeddings. Unlike conventional methods that encode local audio features into ordered sequences, Music2Latent2 compresses audio signals into sets of summary embeddings, where each embedding can capture distinct global features of the input sample. This enables to achieve higher reconstruction quality at the same compression ratio. To handle arbitrary audio lengths, Music2Latent2 employs an autoregressive consistency model trained on two consecutive audio chunks with causal masking, ensuring coherent reconstruction across segment boundaries. Additionally, we propose a novel two-step decoding procedure that leverages the denoising capabilities of consistency models to further refine the generated audio at no additional cost. Our experiments demonstrate that Music2Latent2 outperforms existing continuous audio autoencoders regarding audio quality and performance on downstream tasks. Music2Latent2 paves the way for new possibilities in audio compression.

  • 3 authors
·
Jan 29

PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences

Large foundation models pretrained on raw web-scale data are not readily deployable without additional step of extensive alignment to human preferences. Such alignment is typically done by collecting large amounts of pairwise comparisons from humans ("Do you prefer output A or B?") and learning a reward model or a policy with the Bradley-Terry-Luce (BTL) model as a proxy for a human's underlying implicit preferences. These methods generally suffer from assuming a universal preference shared by all humans, which lacks the flexibility of adapting to plurality of opinions and preferences. In this work, we propose PAL, a framework to model human preference complementary to existing pretraining strategies, which incorporates plurality from the ground up. We propose using the ideal point model as a lens to view alignment using preference comparisons. Together with our novel reformulation and using mixture modeling, our framework captures the plurality of population preferences while simultaneously learning a common preference latent space across different preferences, which can few-shot generalize to new, unseen users. Our approach enables us to use the penultimate-layer representation of large foundation models and simple MLP layers to learn reward functions that are on-par with the existing large state-of-the-art reward models, thereby enhancing efficiency of reward modeling significantly. We show that PAL achieves competitive reward model accuracy compared to strong baselines on 1) Language models with Summary dataset ; 2) Image Generative models with Pick-a-Pic dataset ; 3) A new semisynthetic heterogeneous dataset generated using Anthropic Personas. Finally, our experiments also highlight the shortcoming of current preference datasets that are created using rigid rubrics which wash away heterogeneity, and call for more nuanced data collection approaches.

  • 4 authors
·
Jun 12, 2024

GenAD: Generative End-to-End Autonomous Driving

Directly producing planning results from raw sensors has been a long-desired solution for autonomous driving and has attracted increasing attention recently. Most existing end-to-end autonomous driving methods factorize this problem into perception, motion prediction, and planning. However, we argue that the conventional progressive pipeline still cannot comprehensively model the entire traffic evolution process, e.g., the future interaction between the ego car and other traffic participants and the structural trajectory prior. In this paper, we explore a new paradigm for end-to-end autonomous driving, where the key is to predict how the ego car and the surroundings evolve given past scenes. We propose GenAD, a generative framework that casts autonomous driving into a generative modeling problem. We propose an instance-centric scene tokenizer that first transforms the surrounding scenes into map-aware instance tokens. We then employ a variational autoencoder to learn the future trajectory distribution in a structural latent space for trajectory prior modeling. We further adopt a temporal model to capture the agent and ego movements in the latent space to generate more effective future trajectories. GenAD finally simultaneously performs motion prediction and planning by sampling distributions in the learned structural latent space conditioned on the instance tokens and using the learned temporal model to generate futures. Extensive experiments on the widely used nuScenes benchmark show that the proposed GenAD achieves state-of-the-art performance on vision-centric end-to-end autonomous driving with high efficiency. Code: https://github.com/wzzheng/GenAD.

  • 5 authors
·
Feb 18, 2024

OCTET: Object-aware Counterfactual Explanations

Nowadays, deep vision models are being widely deployed in safety-critical applications, e.g., autonomous driving, and explainability of such models is becoming a pressing concern. Among explanation methods, counterfactual explanations aim to find minimal and interpretable changes to the input image that would also change the output of the model to be explained. Such explanations point end-users at the main factors that impact the decision of the model. However, previous methods struggle to explain decision models trained on images with many objects, e.g., urban scenes, which are more difficult to work with but also arguably more critical to explain. In this work, we propose to tackle this issue with an object-centric framework for counterfactual explanation generation. Our method, inspired by recent generative modeling works, encodes the query image into a latent space that is structured in a way to ease object-level manipulations. Doing so, it provides the end-user with control over which search directions (e.g., spatial displacement of objects, style modification, etc.) are to be explored during the counterfactual generation. We conduct a set of experiments on counterfactual explanation benchmarks for driving scenes, and we show that our method can be adapted beyond classification, e.g., to explain semantic segmentation models. To complete our analysis, we design and run a user study that measures the usefulness of counterfactual explanations in understanding a decision model. Code is available at https://github.com/valeoai/OCTET.

  • 6 authors
·
Nov 22, 2022

LiPCoT: Linear Predictive Coding based Tokenizer for Self-supervised Learning of Time Series Data via Language Models

Language models have achieved remarkable success in various natural language processing tasks. However, their application to time series data, a crucial component in many domains, remains limited. This paper proposes LiPCoT (Linear Predictive Coding based Tokenizer for time series), a novel tokenizer that encodes time series data into a sequence of tokens, enabling self-supervised learning of time series using existing Language model architectures such as BERT. Unlike traditional time series tokenizers that rely heavily on CNN encoder for time series feature generation, LiPCoT employs stochastic modeling through linear predictive coding to create a latent space for time series providing a compact yet rich representation of the inherent stochastic nature of the data. Furthermore, LiPCoT is computationally efficient and can effectively handle time series data with varying sampling rates and lengths, overcoming common limitations of existing time series tokenizers. In this proof-of-concept work, we present the effectiveness of LiPCoT in classifying Parkinson's disease (PD) using an EEG dataset from 46 participants. In particular, we utilize LiPCoT to encode EEG data into a small vocabulary of tokens and then use BERT for self-supervised learning and the downstream task of PD classification. We benchmark our approach against several state-of-the-art CNN-based deep learning architectures for PD detection. Our results reveal that BERT models utilizing self-supervised learning outperformed the best-performing existing method by 7.1% in precision, 2.3% in recall, 5.5% in accuracy, 4% in AUC, and 5% in F1-score highlighting the potential for self-supervised learning even on small datasets. Our work will inform future foundational models for time series, particularly for self-supervised learning.

  • 1 authors
·
Aug 14, 2024

LangSplat: 3D Language Gaussian Splatting

Human lives in a 3D world and commonly uses natural language to interact with a 3D scene. Modeling a 3D language field to support open-ended language queries in 3D has gained increasing attention recently. This paper introduces LangSplat, which constructs a 3D language field that enables precise and efficient open-vocabulary querying within 3D spaces. Unlike existing methods that ground CLIP language embeddings in a NeRF model, LangSplat advances the field by utilizing a collection of 3D Gaussians, each encoding language features distilled from CLIP, to represent the language field. By employing a tile-based splatting technique for rendering language features, we circumvent the costly rendering process inherent in NeRF. Instead of directly learning CLIP embeddings, LangSplat first trains a scene-wise language autoencoder and then learns language features on the scene-specific latent space, thereby alleviating substantial memory demands imposed by explicit modeling. Existing methods struggle with imprecise and vague 3D language fields, which fail to discern clear boundaries between objects. We delve into this issue and propose to learn hierarchical semantics using SAM, thereby eliminating the need for extensively querying the language field across various scales and the regularization of DINO features. Extensive experiments on open-vocabulary 3D object localization and semantic segmentation demonstrate that LangSplat significantly outperforms the previous state-of-the-art method LERF by a large margin. Notably, LangSplat is extremely efficient, achieving a {\speed} times speedup compared to LERF at the resolution of 1440 times 1080. We strongly recommend readers to check out our video results at https://langsplat.github.io

  • 5 authors
·
Dec 26, 2023 2

Astrea: A MOE-based Visual Understanding Model with Progressive Alignment

Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.

  • 15 authors
·
Mar 12

Hyperbolic Large Language Models

Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

  • 5 authors
·
Sep 6

Dense Text Retrieval based on Pretrained Language Models: A Survey

Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.

  • 4 authors
·
Nov 27, 2022

EmoReg: Directional Latent Vector Modeling for Emotional Intensity Regularization in Diffusion-based Voice Conversion

The Emotional Voice Conversion (EVC) aims to convert the discrete emotional state from the source emotion to the target for a given speech utterance while preserving linguistic content. In this paper, we propose regularizing emotion intensity in the diffusion-based EVC framework to generate precise speech of the target emotion. Traditional approaches control the intensity of an emotional state in the utterance via emotion class probabilities or intensity labels that often lead to inept style manipulations and degradations in quality. On the contrary, we aim to regulate emotion intensity using self-supervised learning-based feature representations and unsupervised directional latent vector modeling (DVM) in the emotional embedding space within a diffusion-based framework. These emotion embeddings can be modified based on the given target emotion intensity and the corresponding direction vector. Furthermore, the updated embeddings can be fused in the reverse diffusion process to generate the speech with the desired emotion and intensity. In summary, this paper aims to achieve high-quality emotional intensity regularization in the diffusion-based EVC framework, which is the first of its kind work. The effectiveness of the proposed method has been shown across state-of-the-art (SOTA) baselines in terms of subjective and objective evaluations for the English and Hindi languages Demo samples are available at the following URL: \url{https://nirmesh-sony.github.io/EmoReg/}.

  • 5 authors
·
Dec 29, 2024 1

SHaDe: Compact and Consistent Dynamic 3D Reconstruction via Tri-Plane Deformation and Latent Diffusion

We present a novel framework for dynamic 3D scene reconstruction that integrates three key components: an explicit tri-plane deformation field, a view-conditioned canonical radiance field with spherical harmonics (SH) attention, and a temporally-aware latent diffusion prior. Our method encodes 4D scenes using three orthogonal 2D feature planes that evolve over time, enabling efficient and compact spatiotemporal representation. These features are explicitly warped into a canonical space via a deformation offset field, eliminating the need for MLP-based motion modeling. In canonical space, we replace traditional MLP decoders with a structured SH-based rendering head that synthesizes view-dependent color via attention over learned frequency bands improving both interpretability and rendering efficiency. To further enhance fidelity and temporal consistency, we introduce a transformer-guided latent diffusion module that refines the tri-plane and deformation features in a compressed latent space. This generative module denoises scene representations under ambiguous or out-of-distribution (OOD) motion, improving generalization. Our model is trained in two stages: the diffusion module is first pre-trained independently, and then fine-tuned jointly with the full pipeline using a combination of image reconstruction, diffusion denoising, and temporal consistency losses. We demonstrate state-of-the-art results on synthetic benchmarks, surpassing recent methods such as HexPlane and 4D Gaussian Splatting in visual quality, temporal coherence, and robustness to sparse-view dynamic inputs.

  • 1 authors
·
May 22

Robust Representation Consistency Model via Contrastive Denoising

Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85times on average. Codes are available at: https://github.com/jiachenlei/rRCM.

  • 8 authors
·
Jan 22

A Periodic Bayesian Flow for Material Generation

Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.

  • 9 authors
·
Feb 4

LD-ZNet: A Latent Diffusion Approach for Text-Based Image Segmentation

Large-scale pre-training tasks like image classification, captioning, or self-supervised techniques do not incentivize learning the semantic boundaries of objects. However, recent generative foundation models built using text-based latent diffusion techniques may learn semantic boundaries. This is because they have to synthesize intricate details about all objects in an image based on a text description. Therefore, we present a technique for segmenting real and AI-generated images using latent diffusion models (LDMs) trained on internet-scale datasets. First, we show that the latent space of LDMs (z-space) is a better input representation compared to other feature representations like RGB images or CLIP encodings for text-based image segmentation. By training the segmentation models on the latent z-space, which creates a compressed representation across several domains like different forms of art, cartoons, illustrations, and photographs, we are also able to bridge the domain gap between real and AI-generated images. We show that the internal features of LDMs contain rich semantic information and present a technique in the form of LD-ZNet to further boost the performance of text-based segmentation. Overall, we show up to 6% improvement over standard baselines for text-to-image segmentation on natural images. For AI-generated imagery, we show close to 20% improvement compared to state-of-the-art techniques. The project is available at https://koutilya-pnvr.github.io/LD-ZNet/.

  • 5 authors
·
Mar 22, 2023

Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search

Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/

  • 5 authors
·
Jun 1, 2023

SESA: Supervised Explicit Semantic Analysis

In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.

  • 2 authors
·
Aug 10, 2017

Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models

Recently, diffusion models have made remarkable progress in text-to-image (T2I) generation, synthesizing images with high fidelity and diverse contents. Despite this advancement, latent space smoothness within diffusion models remains largely unexplored. Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image. This property proves beneficial in downstream tasks, including image interpolation, inversion, and editing. In this work, we expose the non-smoothness of diffusion latent spaces by observing noticeable visual fluctuations resulting from minor latent variations. To tackle this issue, we propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth. Specifically, we introduce Step-wise Variation Regularization to enforce the proportion between the variations of an arbitrary input latent and that of the output image is a constant at any diffusion training step. In addition, we devise an interpolation standard deviation (ISTD) metric to effectively assess the latent space smoothness of a diffusion model. Extensive quantitative and qualitative experiments demonstrate that Smooth Diffusion stands out as a more desirable solution not only in T2I generation but also across various downstream tasks. Smooth Diffusion is implemented as a plug-and-play Smooth-LoRA to work with various community models. Code is available at https://github.com/SHI-Labs/Smooth-Diffusion.

  • 9 authors
·
Dec 7, 2023

NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models

Generative models have been very popular in the recent years for their image generation capabilities. GAN-based models are highly regarded for their disentangled latent space, which is a key feature contributing to their success in controlled image editing. On the other hand, diffusion models have emerged as powerful tools for generating high-quality images. However, the latent space of diffusion models is not as thoroughly explored or understood. Existing methods that aim to explore the latent space of diffusion models usually relies on text prompts to pinpoint specific semantics. However, this approach may be restrictive in areas such as art, fashion, or specialized fields like medicine, where suitable text prompts might not be available or easy to conceive thus limiting the scope of existing work. In this paper, we propose an unsupervised method to discover latent semantics in text-to-image diffusion models without relying on text prompts. Our method takes a small set of unlabeled images from specific domains, such as faces or cats, and a pre-trained diffusion model, and discovers diverse semantics in unsupervised fashion using a contrastive learning objective. Moreover, the learned directions can be applied simultaneously, either within the same domain (such as various types of facial edits) or across different domains (such as applying cat and face edits within the same image) without interfering with each other. Our extensive experiments show that our method achieves highly disentangled edits, outperforming existing approaches in both diffusion-based and GAN-based latent space editing methods.

  • 2 authors
·
Dec 8, 2023

Discovering Interpretable Directions in the Semantic Latent Space of Diffusion Models

Denoising Diffusion Models (DDMs) have emerged as a strong competitor to Generative Adversarial Networks (GANs). However, despite their widespread use in image synthesis and editing applications, their latent space is still not as well understood. Recently, a semantic latent space for DDMs, coined `h-space', was shown to facilitate semantic image editing in a way reminiscent of GANs. The h-space is comprised of the bottleneck activations in the DDM's denoiser across all timesteps of the diffusion process. In this paper, we explore the properties of h-space and propose several novel methods for finding meaningful semantic directions within it. We start by studying unsupervised methods for revealing interpretable semantic directions in pretrained DDMs. Specifically, we show that global latent directions emerge as the principal components in the latent space. Additionally, we provide a novel method for discovering image-specific semantic directions by spectral analysis of the Jacobian of the denoiser w.r.t. the latent code. Next, we extend the analysis by finding directions in a supervised fashion in unconditional DDMs. We demonstrate how such directions can be found by relying on either a labeled data set of real images or by annotating generated samples with a domain-specific attribute classifier. We further show how to semantically disentangle the found direction by simple linear projection. Our approaches are applicable without requiring any architectural modifications, text-based guidance, CLIP-based optimization, or model fine-tuning.

  • 4 authors
·
Mar 20, 2023

Improved Training Technique for Latent Consistency Models

Consistency models are a new family of generative models capable of producing high-quality samples in either a single step or multiple steps. Recently, consistency models have demonstrated impressive performance, achieving results on par with diffusion models in the pixel space. However, the success of scaling consistency training to large-scale datasets, particularly for text-to-image and video generation tasks, is determined by performance in the latent space. In this work, we analyze the statistical differences between pixel and latent spaces, discovering that latent data often contains highly impulsive outliers, which significantly degrade the performance of iCT in the latent space. To address this, we replace Pseudo-Huber losses with Cauchy losses, effectively mitigating the impact of outliers. Additionally, we introduce a diffusion loss at early timesteps and employ optimal transport (OT) coupling to further enhance performance. Lastly, we introduce the adaptive scaling-c scheduler to manage the robust training process and adopt Non-scaling LayerNorm in the architecture to better capture the statistics of the features and reduce outlier impact. With these strategies, we successfully train latent consistency models capable of high-quality sampling with one or two steps, significantly narrowing the performance gap between latent consistency and diffusion models. The implementation is released here: https://github.com/quandao10/sLCT/

  • 5 authors
·
Feb 3 2